Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(20): 206502, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829100

ABSTRACT

The disorder operator is often designed to reveal the conformal field theory (CFT) information in quantum many-body systems. By using large-scale quantum Monte Carlo simulation, we study the scaling behavior of disorder operators on the boundary in the two-dimensional Heisenberg model on the square-octagon lattice with gapless topological edge state. In the Affleck-Kennedy-Lieb-Tasaki phase, the disorder operator is shown to hold the perimeter scaling with a logarithmic term associated with the Luttinger liquid parameter K. This effective Luttinger liquid parameter K reflects the low-energy physics and CFT for (1+1)D boundary. At bulk critical point, the effective K is suppressed but it keeps finite value, indicating the coupling between the gapless edge state and bulk fluctuation. The logarithmic term numerically captures this coupling picture, which reveals the (1+1)D SU(2)_{1} CFT and (2+1)D O(3) CFT at boundary criticality. Our Letter paves a new way to study the exotic boundary state and boundary criticality.

2.
Nat Commun ; 15(1): 4373, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782908

ABSTRACT

The latest discovery of high temperature superconductivity near 80 K in La3Ni2O7 under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking. Here we report our direct measurement of the electronic structures of La3Ni2O7 by high-resolution angle-resolved photoemission spectroscopy. The Fermi surface and band structures of La3Ni2O7 are observed and compared with the band structure calculations. Strong electron correlations are revealed which are orbital- and momentum-dependent. A flat band is formed from the Ni-3d z 2 orbitals around the zone corner which is ~ 50 meV below the Fermi level and exhibits the strongest electron correlation. In many theoretical proposals, this band is expected to play the dominant role in generating superconductivity in La3Ni2O7. Our observations provide key experimental information to understand the electronic structure and origin of high temperature superconductivity in La3Ni2O7.

3.
Mater Horiz ; 11(11): 2749-2758, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38533828

ABSTRACT

The intricate correlation between lattice geometry, topological behavior and charge degrees of freedom plays a key role in determining the physical and chemical properties of a quantum-magnetic system. Herein, we investigate the introduction of the unusual oxidation state as an alternative pathway to modulate the magnetic ground state in the well-known S = 1 Haldane system nickelate Y2BaNiO5 (YBNO). YBNO is topologically reduced to incorporate d9-Ni+ (S = 1/2) in the one-dimensional Haldane chain system. The random distribution of Ni+ for the first time results in the emergence of a one-dimensional ferromagnetic phase with a transition temperature far above room temperature. Theoretical calculations reveal that the antiferromagnetic interplay can evolve into ferromagnetic interactions with the presence of oxygen vacancies, which promotes the formation of ferromagnetic order within one-dimensional nickel chains. The unusual electronic instabilities in the nickel-based Haldane system may offer new possibilities towards unconventional physical and chemical properties from quantum interactions.

4.
Adv Sci (Weinh) ; 11(5): e2305054, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050864

ABSTRACT

Topological superconductors have drawn significant interest from the scientific community due to the accompanying Majorana fermions. Here, the discovery of electronic structure and superconductivity (SC) in high-entropy ceramics Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 Cx (x = 1 and 0.8) combined with experiments and first-principles calculations is reported. The Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 Cx high-entropy ceramics show bulk type-II SC with Tc ≈ 4.00 K (x = 1) and 2.65 K (x = 0.8), respectively. The specific heat jump (∆C/γTc ) is equal to 1.45 (x = 1) and 1.52 (x = 0.8), close to the expected value of 1.43 for the BCS superconductor in the weak coupling limit. The high-pressure resistance measurements show a robust SC against high physical pressure in Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 C, with a slight Tc variation of 0.3 K within 82.5 GPa. Furthermore, the first-principles calculations indicate that the Dirac-like point exists in the electronic band structures of Ti0.2 Zr0.2 Nb0.2 Mo0.2 Ta0.2 C, which is potentially a topological superconductor. The Dirac-like point is mainly contributed by the d orbitals of transition metals M and the p orbitals of C. The high-entropy ceramics provide an excellent platform for the fabrication of novel quantum devices, and the study may spark significant future physics investigations in this intriguing material.

5.
Phys Rev Lett ; 131(12): 126001, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37802931

ABSTRACT

The newly discovered Ruddlesden-Popper bilayer La_{3}Ni_{2}O_{7} reaches a remarkable superconducting transition temperature T_{c}≈80 K under a pressure of above 14 GPa. Here we propose a minimal bilayer two-orbital model of the high-pressure phase of La_{3}Ni_{2}O_{7}. Our model is constructed with the Ni-3d_{x^{2}-y^{2}}, 3d_{3z^{2}-r^{2}} orbitals by using Wannier downfolding of the density functional theory calculations, which captures the key ingredients of the material, such as band structure and Fermi surface topology. There are two electron pockets, α, ß, and one hole pocket, γ, on the Fermi surface, in which the α, ß pockets show mixing of two orbitals, while the γ pocket is associated with Ni-d_{3z^{2}-r^{2}} orbital. The random phase approximation spin susceptibility reveals a magnetic enhancement associated with the d_{3z^{2}-r^{2}} state. A higher energy model with O-p orbitals is also provided for further study.

6.
Nature ; 621(7979): 493-498, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37437603

ABSTRACT

Although high-transition-temperature (high-Tc) superconductivity in cuprates has been known for more than three decades, the underlying mechanism remains unknown1-4. Cuprates are the only unconventional superconductors that exhibit bulk superconductivity with Tc above the liquid-nitrogen boiling temperature of 77 K. Here we observe that high-pressure resistance and mutual inductive magnetic susceptibility measurements showed signatures of superconductivity in single crystals of La3Ni2O7 with maximum Tc of 80 K at pressures between 14.0 GPa and 43.5 GPa. The superconducting phase under high pressure has an orthorhombic structure of Fmmm space group with the [Formula: see text] and [Formula: see text] orbitals of Ni cations strongly mixing with oxygen 2p orbitals. Our density functional theory calculations indicate that the superconductivity emerges coincidently with the metallization of the σ-bonding bands under the Fermi level, consisting of the [Formula: see text] orbitals with the apical oxygen ions connecting the Ni-O bilayers. Thus, our discoveries provide not only important clues for the high-Tc superconductivity in this Ruddlesden-Popper double-layered perovskite nickelates but also a previously unknown family of compounds to investigate the high-Tc superconductivity mechanism.

7.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37522408

ABSTRACT

Recently, a debate is raising the concern of possible carbonaceous sulfur hydrides with room-temperature superconductivity around 270 GPa. In order to systematically investigate the structural information and relevant natures of C-S-H superconductors, we performed an extremely extensive structure search and first-principles calculations under high pressures. As a result, the metastable stoichiometries of CSH7, C2SH14, CS2H10, and CS2H11 were unveiled under high pressure, which can be viewed as CH4 units inserted into the S-H framework. Given the super-high superconductivity of Im3̄m-SH3, we performed electron-phonon coupling calculations of these compounds,the metastable of R3m-CSH7, Cm-CSH7, Cm-CS2H10, P3m1-CS2H10, Cm-CS2H11, and Fmm2-CS2H11 are predicted to become good phonon-mediated superconductors that could reach Tc of 130, 120, 72, 74, 92, and 70 K at 270 GPa, respectively. Furthermore, we identified that high Tc is associated with the large contribution of the S-H framework to the electron density of states near the Fermi level. Our results highlight the importance of the S-H framework in superconductivity and verify that the suppression of density of states of these carbonaceous sulfur hydrides by CH4 units results in Tc lower than that of Im3̄m-SH3, which could act as a useful guidance in the design and optimization of high-Tc superconductors in these and related systems.

8.
J Phys Chem Lett ; 13(10): 2442-2451, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35263107

ABSTRACT

We report the crystal structure, charge-density-wave (CDW), superconductivity (SC), and ferromagnetism (FM) in CuIr2-xCrxTe4 (0 ≤ x ≤ 2) chalcogenides. Powder x-ray diffraction (PXRD) results reveal that the CuIr2-xCrxTe4 series are distinguished between two structural types and three different regions: (i) layered trigonal structure region, (ii) mixed phase regions, and (iii) spinel structure region. Besides, Cr substitution for Ir site results in rich physical properties including the collapse of CDW, the formation of dome-shaped like SC, and the emergence of magnetism. Cr doping slightly elevates the superconducting critical temperature (Tsc) to its highest Tsc = 2.9 K around x = 0.06. As x increases from 0.3 to 0.4, the ferromagnetic Curie temperature (Tc) increases from 175 to 260 K. However, the Tc remains unchanged in the spinel range of 1.9 ≤ x ≤ 2. This finding provides a comprehensive material platform for investigating the interplay between CDW, SC, and FM multipartite quantum states.

9.
J Am Chem Soc ; 142(15): 7168-7178, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32216316

ABSTRACT

Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A2BB'O6 compounds. The A-site atomic splitting (∼1.0-1.2 Šbetween the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (∼0.2 Šatomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.

10.
J Phys Condens Matter ; 32(2): 025702, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31546238

ABSTRACT

Transition metal dichalcogenides (TMDCs) usually exhibit layered polytypic structures due to the weak interlayer coupling. 2H-NbSe2 is one of the most widely studied in the pristine TMDC family due to its high superconducting transition temperature (T c = 7.3 K) and the occurrence of a charge-density wave (CDW) order below 33 K. The coexistence of CDW with superconductivity poses an intriguing open question about the relationship between Fermi surface nesting and Cooper pairing. Past studies of this issue have mostly been focused on doping 2H-NbSe2 by 3d transition metals without significantly changing its crystal structure. Here we replaced the Se by Te in 2H-NbSe2 in order to design a new 1T polytype layered TMDC NbSeTe, which adopts a trigonal structure with space group P [Formula: see text] m1. We successfully grew large size and high-quality single crystals of 1T-NbSeTe via the vapor transport method using I 2 as the transport agent. Temperature-dependent resistivity and specific heat data revealed a bulk T c at 1.3 K, which is the first observation of superconductivity in pure 1T-NbSeTe phase. This compound enlarged the family of superconducting TMDCs and provides an opportunity to study the interplay between CDW and superconductivity in the trigonal structure.

11.
Sci Rep ; 9(1): 12771, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31484987

ABSTRACT

The control and detection of crystallographic chirality is an important and challenging scientific problem. Chirality has wide ranging implications from medical physics to cosmology including an intimate but subtle connection in magnetic systems, for example Mn1-xFexSi. X-ray diffraction techniques with resonant or polarized variations of the experimental setup are currently utilized to characterize lattice chirality. We demonstrate using theoretical calculations the feasibility of indirect K -edge bimagnon resonant inelastic X-ray scattering (RIXS) spectrum as a viable experimental technique to distinguish crystallographic handedness. We apply spin wave theory to the recently discovered √5 × âˆš5 vacancy ordered chalcogenide Rb0.89Fe1.58Se2 for realistic X-ray experimental set up parameters (incoming energy, polarization, Bragg angle, and experimental resolution) to show that the computed RIXS spectrum is sensitive to the underlying handedness (right or left) of the lattice. A Flack parameter definition that incorporates the right- and left- chiral lattice RIXS response is introduced. It is shown that the RIXS response of the multiband magnon system RbFeSe arises both from inter- and intra- band scattering processes. The extinction or survival of these RIXS peaks are sensitive to the underlying chiral lattice orientation. This in turn allows for the identification of the two chiral lattice orientations.

12.
J Phys Condens Matter ; 31(39): 395502, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31185461

ABSTRACT

We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI3/SnI3/CrI3 trilayer structure. From first-principles calculations, the BiI3-type SnI3 monolayer without spin-orbit coupling has Dirac cones at the corners of the hexagonal Brillouin zone. With spin-orbit coupling turned on, it becomes a topological insulator, as revealed by a non-vanishing Z 2 invariant and an effective model from symmetry considerations. Without spin-orbit coupling, the Dirac points are protected if the CrI3 layers are stacked ferromagnetically, and are gapped if the CrI3 layers are stacked antiferromagnetically, which can be explained by the irreducible representations of the magnetic space groups [Formula: see text] and [Formula: see text], corresponding to ferromagnetic and antiferromagnetic stacking, respectively. By analyzing the effective model including the perturbations, we find that the competition between the magnetic proximity effect and spin-orbit coupling leads to a topological phase transition between a trivial insulator and a topological insulator.

13.
Sci Rep ; 9(1): 1025, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30705289

ABSTRACT

We predict three novel phases of the carbon nitride (CN) bilayer, denoted α-C2N2, ß-C2N2 and γ-C4N4, respectively. All of them consist of two CN sheets connected by C-C covalent bonds. The phonon dispersions reveal that all these phases are dynamically stable, because no imaginary frequency is present. The transition pathway between α-C2N2 and ß-C2N2 is investigated, which involves bond-breaking and bond-reforming between C and N. This conversion is difficult, since the activation energy barrier is 1.90 eV per unit cell, high enough to prevent the transformation at room temperature. Electronic structure calculations show that all three phases are semiconductors with indirect band gaps of 3.76/5.22 eV, 4.23/5.75 eV and 2.06/3.53 eV, respectively, by PBE/HSE calculation. The ß-C2N2 has the widest band gap among the three phases. All three bilayers can become metallic under tensile strain, and the indirect gap of γ-C4N4 can turn into a direct one. γ-C4N4 can become an anisotropic Dirac semimetal under uniaxial tensile strain. Anisotropic Dirac cones with high Fermi velocity of the order of 105 m/s appear under 12% strain. Our results suggest that the three two-dimensional materials have potential applications in electronics, semiconductors, optics and spintronics.

14.
Phys Rev Lett ; 121(11): 117202, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30265096

ABSTRACT

We study the Néel-paramagnetic quantum phase transition in two-dimensional dimerized S=1/2 Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the long-standing issue of the role of cubic interactions arising in the bond-operator representation when the dimer pattern lacks a certain symmetry. We find nonmonotonic (monotonic) size dependence in the staggered (columnar) dimerized model, where cubic interactions are (are not) present. We conclude that there is a new irrelevant field in the staggered model, but, at variance with previous claims, it is not the leading irrelevant field. The new exponent is ω_{2}≈1.25 and the prefactor of the correction L^{-ω_{2}} is large and comes with a different sign from that of the conventional correction with ω_{1}≈0.78. Our study highlights competing scaling corrections at quantum critical points.

15.
Phys Rev E ; 98(1-1): 012127, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110722

ABSTRACT

We consider the triangular kagome XXZ-Ising model (TKL XXZ-Ising model) formed by inserting small triangles ("a-trimers") with XXZ spin-1 inside the triangles of the kagome lattice ("b-trimers"). It is a mixed spin system and can be solved exactly by transforming into the kagome lattice with the general transformation method for decorated spin systems. In the absence of an external field, we integrate out the quantum spins of the a-trimers and map the TKL model to the kagome Ising model exactly. We obtain the full phase diagram and their zero-temperature entropies (e.g., s_{max}=5.48895 per unit cell is given for the phase with the maximum entropy). When an external field is applied, 20 phases are found due to the quantum fluctuations of a-trimers. Moreover, the high spins in the a-trimers can lead to a stable quantized growth of the magnetization process in the Heisenberg limit.

16.
Beilstein J Nanotechnol ; 9: 1527-1535, 2018.
Article in English | MEDLINE | ID: mdl-29977685

ABSTRACT

Background: A Majorana bound state is a superconducting quasiparticle that is the superposition of particle and hole with equal amplitude. We propose a verification of this amplitude equality by analyzing the spatial Rabi oscillations of the quantum states of a quantum dot that is tunneling-coupled to the Majorana bound states. Results: We find two resonant Rabi driving energies that correspond to the energy splitting due to the coupling of two spatially separated Majorana bound states. The resulting Rabi oscillating frequencies from these two different resonant driving energies are identical for the Majorana bound states, while different for ordinary Andreev bound states. We further study a double-quantum-dot setup and find a nonlocal quantum correlation between them that is mediated by two Majorana bound states. This nonlocal correlation has the signature of additional resonant driving energies. Conclusion: Our method can be used to distinguish between Majorana bound states and Andreev bound states. It also gives a precise measurement of the energy splitting between two Majorana bound states.

17.
Sci Rep ; 8(1): 1674, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374189

ABSTRACT

A new phase of nitrogen with octagon structure has been predicted in our previous study, which we referred to as octagon-nitrogene (ON). In this work, we make further investigations of its stability and electronic structures. The phonon dispersion has no imaginary phonon modes, which indicates that ON is dynamically stable. Using ab initio molecular dynamic simulations, this structure is found to be stable up to room temperature and possibly higher, and ripples that are similar to that of graphene are formed on the ON sheet. Based on the density functional theory calculation, we find that single layer ON is a two-dimension wide gap semiconductor with an indirect band gap of 4.7 eV. This gap can be decreased by stacking due to the interlayer interactions. Biaxial tensile strain and perpendicular electric field can greatly influence the band structure of ON, in which the gap decreases and eventually closes as the biaxial tensile strain or the perpendicular electric field increases. In other words, both biaxial tensile strain and a perpendicular electric field can drive the insulator-to-metal transition, and thus can be used to engineer the band gap of ON. From our results, we see that ON has potential applications in many fields, including electronics, semiconductors, optics and spintronics.

18.
Phys Rev B ; 98(18)2018 Nov.
Article in English | MEDLINE | ID: mdl-38915822

ABSTRACT

We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe2S3 under pressure. The experimental results reveal a gradual enhancement of the stripe-type ordering temperature with increasing pressure up to 2.6 GPa and no observable change in the size of the ordered moment. The ab initio calculations suggest that the magnetism is highly sensitive to the Fe-S bond lengths and angles, clarifying discrepancies with previously published results. In contrast to our experimental observations, the calculations predict a monotonic reduction of the ordered moment with pressure. We suggest that the robustness of the stripe-type antiferromagnetism is due to strong electron correlations not fully considered in the calculations.

19.
J Phys Condens Matter ; 29(50): 505802, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29125474

ABSTRACT

We calculate the K-edge indirect bimagnon resonant inelastic x-ray scattering (RIXS) intensity spectra of the bicollinear antiferromagnetic order known to occur in the α-FeTe chalcogenide system. Utilizing linear spin wave theory for this large-S spin system we find that the bimagnon spectrum contains four scattering channels (two intraband and two interband). We find from our calculations that for suitable energy-momentum combination the RIXS spectra can exhibit a one-, two- or three- peak structure. The number of peaks provides a clue on the various bimagnon excitation processes that can be supported both in and within the acoustic and optical magnon branches of the bicollinear antiferromagnet. Unlike the RIXS response of the antiferromagnetic or the collinear antiferromagnetic spin ordering, the RIXS intensity spectrum of the bicollinear antiferromagnet does not vanish at the magnetic ordering wave vector [Formula: see text]. It is also sensitive to next-next nearest neighbor and biquadratic coupling interactions. Our predicted RIXS spectrum can be utilized to understand the role of multi-channel bimagnon spin excitations present in the α-FeTe chalcogenide.

20.
Sci Rep ; 6: 34177, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27680297

ABSTRACT

In our previous study, we have predicted the novel two-dimensional honeycomb monolayers of pnictogen. In particular, the structure and properties of the honeycomb monolayer of nitrogen, which we call nitrogene, are very unusual. In this paper, we make an in-depth investigation of its electronic structure. We find that the band structure of nitrogene can be engineered in several ways: controlling the stacking of monolayers, application of biaxial tensile strain, and application of perpendicular electric field. The band gap of nitrogene is found to decrease with the increasing number of layers. The perpendicular electric field can also reduce the band gap when it is larger than 0.18 V/Å, and the gap closes at 0.35 V/Å. A nearly linear dependence of the gap on the electric field is found during the process. Application of biaxial strain can decrease the band gap as well, and eventually closes the gap. After the gap-closing, we find six inequivalent Dirac points in the Brillouin zone under the strain between 17% and 28%, and the nitrogene monolayer becomes a Dirac semimetal. These findings suggest that the electronic structure of nitrogene can be modified by several techniques, which makes it a promising candidate for electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...