Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 370: 82-94, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643938

ABSTRACT

Delivering functional gene into targeted skin cells or tissues to modulate the genes expression, has the potential to treat various hereditary cutaneous disorders. Nevertheless, the lack of safe and effective gene delivery vehicles greatly limits the clinical translation of gene therapy for inherited skin diseases. Herein, we developed a facile elution fractionation strategy to isolate eight HPAEs with Mw ranging from 7.6 to 131.8 kg/mol and D < 2.0 from the one crude HPAE23.7k, and investigated the expression efficiency for TGM1 and COL7A1 plasmids. Gene transfection results revealed that the intermediate MW HPAEs, HPAE20.6k, exhibited the highest gene transfection efficiency (46.4%) and the strongest mean fluorescence intensity (143,032 RLU), compared to other isolated components and the crude product. Importantly, best-performing isolated HPAE effectively delivered COL7A1 (15,974 bp) and TGM1 (7181 bp) plasmids, promoting the efficient expression of type VII collagen (C7) and transglutaminase-1 proteins in cutaneous cells. Our study establishes a straightforward step-by-step elution fractionation strategy for the development of HPAEs gene delivery vectors, expediting their clinical translation in inherited skin diseases.


Subject(s)
Collagen Type VII , Skin , Transfection , Transglutaminases , Transglutaminases/genetics , Transglutaminases/metabolism , Humans , Transfection/methods , Collagen Type VII/genetics , Collagen Type VII/metabolism , Skin/metabolism , Plasmids/genetics , Chemical Fractionation/methods , Gene Expression , Gene Transfer Techniques , Keratinocytes/metabolism
2.
J Control Release ; 368: 157-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367861

ABSTRACT

Gene delivery to macrophages holds great promise for cancer immunotherapy. However, traditional gene delivery methods exhibit low transfection efficiency in macrophages. The star-shaped topological structure of polymers is known to encapsulate genes inside their cores, thereby facilitating sustained release of the genetic material. Herein, combining the structural advantages of star polymers and the transfection advantages of poly (ß-amino ester)s (PAEs), we developed a novel linear oligomer grafting-onto strategy to synthesize a library of multi-terminal star structured PAEs (SPAEs), and evaluated their gene delivery efficiency in various tissue cells. The transfection with human hepatocellular carcinoma cells (HepG2, HCC-LM3 cells and MHCC-97H cells), rat normal liver cells (BRL-3 A cells), human ovarian cancer cells (A2780 cells), African green monkey kidney cells (Vero cells), human cervical cancer cells (HeLa cells), human chondrosarcoma cells (SW1353 cells), and difficult-to-transfect human epidermal keratinocytes (HaCaT cells) and normal human fibroblast cells (NHF cells) showed that SPAEs exhibited superior transfection profile. The GFP transfection efficiency of top-performing SPAEs in HeLa cells (96.1%) was 2.1-fold, and 3.2-fold higher compared to jetPEI and Lipo3000, respectively, indicating that the star-shaped topological structure can significantly enhance the transfection efficiency of PAEs. More importantly, the top-performing SPAEs could efficiently deliver Nod2 DNA to difficult-to-transfect RAW264.7 macrophages, with a high transfection efficiency of 33.9%, which could promote macrophage M1 polarization and enhanced CD8+ T cell response in co-incubation experiments. This work advances gene therapy by targeting difficult-to-transfect macrophages and remodeling the tumor immune microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Ovarian Neoplasms , Rats , Humans , Animals , Chlorocebus aethiops , Female , HeLa Cells , Cell Line, Tumor , Vero Cells , Esters , Transfection , Genetic Therapy , Polymers/chemistry , Macrophages , Tumor Microenvironment
3.
J Nanobiotechnology ; 22(1): 40, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280987

ABSTRACT

Currently, many types of non-linear topological structure polymers, such as brush-shaped, star, branched and dendritic structures, have captured much attention in the field of gene delivery and nanomedicine. Compared with linear polymers, non-linear topological structural polymers offer many advantages, including multiple terminal groups, broad and complicated spatial architecture and multi-functionality sites to enhance gene delivery efficiency and targeting capabilities. Nevertheless, the complexity of their synthesis process severely hampers the development and applications of nonlinear topological polymers. This review aims to highlight various synthetic approaches of non-linear topological architecture polymers, including reversible-deactivation radical polymerization (RDRP) including atom-transfer radical polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, click chemistry reactions and Michael addition, and thoroughly discuss their advantages and disadvantages, as well as analyze their further application potential. Finally, we comprehensively discuss and summarize different non-linear topological structure polymers for genetic materials delivering performance both in vitro and in vivo, which indicated that topological effects and nonlinear topologies play a crucial role in enhancing the transfection performance of polymeric vectors. This review offered a promising guideline for the design and development of novel nonlinear polymers and facilitated the development of a new generation of polymer-based gene vectors.


Subject(s)
Gene Transfer Techniques , Polymers , Polymers/chemistry , Transfection , Click Chemistry , Polymerization
4.
J Nanobiotechnology ; 21(1): 394, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898777

ABSTRACT

Extensive efforts have been dedicated to enhancing the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in cancer cells for the development of effective cancer treatments. However, highly safe and efficient delivery of TRAIL gene remains a significant challenge, especially using cationic polymers. Here, a series of highly branched-linear poly(ß-amino ester)s (H-LPAEs) are developed through a unique oligomer branching strategy. H-LPAEs exhibit a more uniform distribution of linear segments and branching units, leading to excellent DNA condensation and favorable physicochemical properties of H-LPAE/DNA polyplexes. In SW1353 and BMSC cells, the optimized H-LPAEs, H-LPAEB4-S5-TMPTA, achieves superior gene transfection efficiency of 58.0% and 33.4%, which were 2.5-fold and 2.0-fold higher than that of the leading commercial gene transfection reagent, Lipofectamine 3000. Excitingly, H-LPAEB4-S5-TMPTA mediated 56.7% and 28.1% cell apoptosis in HepG2 cells and HeLa cells highlighting its potential application in cancer gene therapy. In addition, locally administered H-LPAEB4-S5-TMPTA delivered TRAIL DNA to HepG2 xenograft tumors and inhibited tumor growth in vivo. This study not only proposes a novel strategy for synthesizing poly(ß-amino ester)s with a unique branched-linear topology but also identifies a promising candidate for highly efficient TRAIL gene transfection.


Subject(s)
Esters , Neoplasms , Humans , HeLa Cells , Ligands , Transfection , DNA , Apoptosis , Gene Expression , Neoplasms/genetics , Neoplasms/therapy
5.
Front Biosci (Landmark Ed) ; 28(5): 90, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37258470

ABSTRACT

BACKGROUND: Src family kinases (SFKs) belong to the non-receptor protein tyrosine kinase family and are generally dysregulated in a variety of tumors. This study aimed to thoroughly investigate the mutation status, expression level, prognostic value and relationship with immune infiltration of SFKs in hepatocellular carcinoma (HCC). METHODS: TIMER2.0, UALCAN, cBioPortal, Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier Plotter were used to analyze the differential expression, genetic alteration, prognostic value and immune cell infiltration of SFKs in HCC patients. Furthermore, we used quantitative real-time PCR (qPCR) and western blot (WB) analysis to measure SFKs mRNA and protein expression in matching specimens of normal tissue and HCC. We analyzed the biological effects of FYN in Huh7 cells and subcutaneous xenograft tumor model. We also studied the biological effects of SRC on Huh7 cells. RESULTS: The mRNA expression levels of LYN, SRC and SRM were elevated in HCC tissues, whereas FYN was reduced. Approximately 10% genetic alterations rate of SFKs was observed in HCC. The mRNA levels of BLK, BRK, FRK, FYN, LCK, LYN, SRC, SRM and YES were correlated with clinical cancer stage. Elevated FYN mRNA levels in HCC were positively correlated with overall survival (OS), whereas SRC was negatively correlated with OS. All SFKs members in HCC were significantly associated with at least half of the six immune-infiltrating cells, including B cells, macrophages, dendritic cells, neutrophils, CD4+ T cells and CD8+ T cells. Furthermore, we confirmed that the protein expression level of FYN was decreased in patients with HCC and in a human hepatoma cell line. Overexpression of FYN suppressed Huh7 cell proliferation, migration, invasion, and tumorigenesis in xenograft nude mice. Knockdown of SRC inhibited Huh7 cell proliferation, migration and invasion. CONCLUSIONS: Dysregulated FYN and SRC expression in HCC is associated with poor prognosis and may be used as novel prognostic biomarkers in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , src-Family Kinases/genetics , src-Family Kinases/metabolism , Carcinoma, Hepatocellular/genetics , Prognosis , Mice, Nude , Liver Neoplasms/genetics , RNA, Messenger/genetics
6.
Protein Pept Lett ; 29(7): 567-573, 2022.
Article in English | MEDLINE | ID: mdl-35546749

ABSTRACT

Protein tyrosine phosphatase receptor-type Q (PTPRQ), a member of the type III tyrosine phosphatase receptor (R3 PTPR) family, is composed of three domains, including 18 extracellular fibronectin type III (FN3) repeats, a transmembrane helix, and a cytoplasmic phosphotyrosine phosphatase (PTP) domain. PTPRQ was initially identified as a transcript upregulated in glomerular mesangial cells in a rat model of glomerulonephritis. Subsequently, studies found that PTPRQ has phosphotyrosine phosphatase and phosphatidylinositol phosphatase activities and can regulate cell proliferation, apoptosis, differentiation, and survival. Further in vivo studies showed that PTPRQ is necessary for the maturation of cochlear hair bundles and is considered a potential gene for deafness. In the recent two decades, 21 mutations in PTPRQ have been linked to autosomal recessive hearing loss (DFNB84) and autosomal dominant hearing loss (DFNA73). Recent mutations, deletions, and amplifications of PTPRQ have been observed in many types of cancers, which indicate that PTPRQ might play an essential role in the development of many cancers. In this review, we briefly describe PTPRQ structure and enzyme activity and focus on the correlation between PTPRQ and human disease. A profound understanding of PTPRQ could be helpful in the identification of new therapeutic targets to treat associated diseases.


Subject(s)
Cochlea/metabolism , Hearing Loss , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Animals , Cochlea/growth & development , Fibronectins , Hearing Loss/genetics , Humans , Phosphatidylinositols , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Rats , Receptor-Like Protein Tyrosine Phosphatases, Class 3/chemistry
8.
Biochem Biophys Res Commun ; 561: 172-179, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34023783

ABSTRACT

Loss of polarity protein Par3 promotes breast cancer tumorigenesis and metastasis. The underlying molecular mechanisms of Par3 down-regulation and related prognostic significance in breast cancer remain unclear. Here, we discovered that Par3 down-regulation was associated with shorter relapse-free survival in Luminal A subtype of breast cancer. Par3 knockdown promoted breast cancer cells migration and invasion. Importantly, we identified that transcription factor Sp1 bound to PARD3 promoter region and induced Par3 expression. Breast cancer patients with low Sp1 showed significantly worse RFS and low expression level of Par3. Par3 over-expression partially reversed Sp1 knockdown induced migration and invasion. Together, decreased Sp1 level mediates Par3 down-regulation, which correlated with poor prognosis of ER + breast cancer patients, via reduced binding with PARD3 promoter.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Neoplasm Recurrence, Local/pathology , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement/physiology , Cell Polarity/physiology , Female , Humans , Neoplasm Grading , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...