Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(7): e17411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001641

ABSTRACT

Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.


Subject(s)
Biodiversity , Soil , China , Soil/chemistry , Ecosystem , Soil Microbiology , Human Activities , Humans , Fungi , Forests
2.
Ecol Evol ; 14(7): e11672, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988351

ABSTRACT

Environmental change exerts a profound effect on soil microbial domains-including bacteria, fungi, and protists-that each perform vital ecological processes. While these microbial domains are ubiquitous and extremely diverse, little is known about how they respond to environmental changes in urban soil ecosystems and what ecological processes shape them. Here we investigated the community assembly processes governing bacteria, fungi, and protists through the lens of four distinct subcommunities: abundant, conditionally rare, conditionally abundant, and rare taxa. We show that transient taxa, including the conditionally rare and conditionally rare or abundant taxa, were the predominant subcommunities. Deterministic processes (e.g., environmental filtering) had major roles in structuring all subcommunities of fungi, as well as conditionally rare and abundant protists. Stochastic processes had strong effects in structuring all subcommunities of bacteria (except rare taxa) and conditionally rare protists. Overall, our study underscores the importance of complementing the traditional taxonomy of microbial domains with the subcommunity approach when investigating microbial communities in urban soil ecosystems.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124399, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38718747

ABSTRACT

Herein, a novel sandwich electrochemiluminescence (ECL) aptasensor was developed based on the resonance energy transfer (RET) with iridium complex doped silicate nanoparticles (SiO2@Ir) as energy donor and gold nanoparticles modified TiVC MXene (AuNPs@TiVC) as energy acceptor. Strong anodic ECL signal of SiO2@Ir was obtained through both co-reactant pathway and annihilation pathway. Electrochemical results showed that SiO2@Ir has good electron transfer rate and large specific surface area to immobilize more aptamers. AuNPs@TiVC apparently quenched the ECL signal of SiO2@Ir due to the ECL resonance energy transfer between them. In the presence of kanamycin (KAN), a sandwich type sensor was formed with the aptamer probes as connecters between the donor and the acceptor, resulting in the decrease of ECL intensity. Under the optimal condition, KAN could be sensitively detected in the range of 0.1 pg/mL to 10 ng/mL with a low detection limit of 24.5 fg/mL. The proposed ECL system exhibited satisfactory analytical performance, which can realize the detection of various biological molecules by adopting suitable aptamer.


Subject(s)
Electrochemical Techniques , Gold , Iridium , Kanamycin , Limit of Detection , Metal Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Iridium/chemistry , Electrochemical Techniques/methods , Kanamycin/analysis , Luminescent Measurements/methods , Nanospheres/chemistry , Aptamers, Nucleotide/chemistry , Titanium/chemistry , Biosensing Techniques/methods , Energy Transfer
5.
Int J Antimicrob Agents ; 63(6): 107176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642811

ABSTRACT

OBJECTIVES: Optimising blood culture processing is important to ensure that bloodstream infections are accurately diagnosed while minimising adverse events caused by antibiotic abuse. This study aimed to evaluate the impact of optimised blood culture processes on antibiotic use, clinical outcomes and economics in intensive care unit (ICU) patients with positive blood cultures. METHODS: From March 2020 to October 2021, this microbiology laboratory implemented a series of improvement measures, including the clinical utility of Fastidious Antimicrobial Neutralization (FAN® PLUS) bottles for the BacT/Alert Virtuo blood culture system, optimisation of bottle reception, graded reports and an upgraded laboratory information system. A total of 122 ICU patients were included in the pre-optimisation group from March 2019 to February 2020, while 179 ICU patients were included in the post-optimisation group from November 2021 to October 2022. RESULTS: Compared with the pre-optimisation group, the average reporting time of identification and antimicrobial sensitivity was reduced by 16.72 hours in the optimised group. The time from admission to targeted antibiotic therapy within 24 hours after receiving both the Gram stain report and the final report were both significantly less in the post-optimisation group compared with the pre-optimisation group. The average hospitalisation time was reduced by 6.49 days, the average antimicrobial drug cost lowered by $1720.85 and the average hospitalisation cost by $9514.17 in the post-optimisation group. CONCLUSIONS: Optimising blood culture processing was associated with a significantly increased positive detection rate, a remarkable reduction in the length of hospital stay and in hospital costs for ICU patients with bloodstream infections.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Critical Illness , Intensive Care Units , Humans , Blood Culture/methods , Blood Culture/economics , Male , Female , Middle Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/economics , Aged , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/economics , Bacteremia/microbiology , Adult , Length of Stay , Microbial Sensitivity Tests/economics , Microbial Sensitivity Tests/methods
6.
Opt Express ; 32(5): 7119-7135, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439401

ABSTRACT

Ghost imaging (GI) has been widely used in the applications including spectral imaging, 3D imaging, and other fields due to its advantages of broad spectrum and anti-interference. Nevertheless, the restricted sampling efficiency of ghost imaging has impeded its extensive application. In this work, we propose a novel foveated pattern affine transformer method based on deep learning for efficient GI. This method enables adaptive selection of the region of interest (ROI) by combining the proposed retina affine transformer (RAT) network with minimal computational and parametric quantities with the foveated speckle pattern. For single-target and multi-target scenarios, we propose RAT and RNN-RAT (recurrent neural network), respectively. The RAT network enables an adaptive alteration of the fovea of the variable foveated patterns spot to different sizes and positions of the target by predicting the affine matrix with a minor number of parameters for efficient GI. In addition, we integrate a recurrent neural network into the proposed RAT to form an RNN-RAT model, which is capable of performing multi-target ROI detection. Simulations and experimental results show that the method can achieve ROI localization and pattern generation in 0.358 ms, which is a 1 × 105 efficiency improvement compared with the previous methods and improving the image quality of ROI by more than 4 dB. This approach not only improves its overall applicability but also enhances the reconstruction quality of ROI. This creates additional opportunities for real-time GI.

7.
Mikrochim Acta ; 191(4): 206, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498074

ABSTRACT

The enhanced cathodic ECL of Ru(bpy)32+ at a bimetallic element MXenes (TiVC MXene) modified electrode in neutral aqueous condition is reported. TiVC MXene significantly catalyzed the oxygen reduction reaction (ORR) as well as the electrochemical reduction of Ru(bpy)32+ to produce reactive oxygen species and Ru(bpy)3+. The obtained hydroxyl radical (OH∙) not only oxidized Ru(bpy)3+ to generate Ru(bpy)32+* and emit light through coreactant pathway, but also oxidized Ru(bpy)32+ to Ru(bpy)33+, which caused an annihilation ECL reaction. As a result, two pathways occurred simultaneously to generate strong cathodic ECL signal. Sulfite removes the dissolved oxygen in water and reduces the occurrence of ORR, which prohibits the generation of OH∙ to decrease the ECL signal. The decrement of ECL intensity varied linearly with the concentration of sulfite in the range 2 nM to 50 µM with a detection limit of 0.14 nM (3σ). The proposed sensor exhibited good analytical performance, and could be used in the detection of sulfite in real samples. The results revealed that the electrocatalytic behavior of TiVC MXene is the key factor for strong cathodic Ru(bpy)32+ ECL, which provides new application in ECL sensing field.

8.
Analyst ; 149(4): 1160-1168, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38167663

ABSTRACT

The poor solubility of iridium complexes severely hampers its application in the electrochemiluminescence (ECL) sensing field. The doping of an iridium complex with silica (SiO2) nanospheres provides feasible solution for this problem. Herein, one kind of water insoluble iridium complex ([Ir(dFppy)2(d(CF3)bpy)](PF6)) was doped with SiO2 nanoparticles to obtain a luminescent nanocomposite (SiO2@Ir) which could generate strong ECL signals to act as a beacon molecule. An "off-on-off" mode ECL sensor was proposed based on the competitive host-guest interactions between 2-adamantanamine (2-ADA), ferrocene (Fc) and cucurbit[7]uril (Q[7]). Fc could be used as an inhibitor to decrease the ECL signal, while Q[7] could wrap Fc to recover the ECL signal. Q[7] has a stronger binding ability with 2-ADA than Fc. As a result, 2-ADA could replace Fc from the cavity of Q[7], and the ECL signal was inhibited again. Under the optimal conditions, the ECL intensity varied linearly with 2-ADA concentration in the range of 1.0 × 10-8 to 1.0 × 10-6 mol L-1 with a detection limit of 2.5 × 10-10 mol L-1. The results not only provided a new avenue for the application of water insoluble iridium complexes in ECL sensing, but also revealed the attractive potential of host-guest interactions in the fabrication of biosensors.

9.
J Cosmet Dermatol ; 23(4): 1217-1223, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38131127

ABSTRACT

BACKGROUND: Vascular occlusion induced by hyaluronic acid injections is rare, but can lead to severe adverse events, including necrosis, blindness, and cerebral infarction. OBJECTIVE: This study aims to explore methods of reducing the risk of complications such as embolism induced by hyaluronic acid injection, and to study the impact of comprehensive systematic treatment on the prognosis of patients with hyaluronic acid embolism. METHODS: The clinical data of three female patients with vascular occlusion due to hyaluronic acid injection was analyzed. Their median age was 26 years, with symptoms presenting 1-6 h postinjection. Hospital stays averaged 6 days. Two patients had ptosis, diplopia, and severe pain after injection of eyebrows. The other, who had a nose enhancement, experienced facial skin color changes and intense pain. RESULTS: Two patients received comprehensive, systematic treatment based on injectable hyaluronidase. One patient self-discharged after receiving injectable hyaluronidase, antispasmodic, and vasodilator treatment on the night of embolism and returned to the hospital 3 days later with worsening embolism symptoms and received symptomatic treatment again. Two patients who received comprehensive, systematic treatment based on injectable hyaluronidase showed significant improvement, while the patient who did not undergo systematic treatment left scars on the face. CONCLUSION: Vascular occlusion caused by hyaluronic acid facial filling is a severe adverse event, and timely, comprehensive, systematic treatment can effectively improve irreversible damage caused by thrombosis, and even cure it.


Subject(s)
Cosmetic Techniques , Dermal Fillers , Embolism , Humans , Female , Adult , Hyaluronic Acid , Hyaluronoglucosaminidase , Embolism/etiology , Embolism/prevention & control , Pain/etiology , Cosmetic Techniques/adverse effects
10.
Opt Express ; 31(25): 41479-41495, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087546

ABSTRACT

The wireless transmission of video data mainly entails addressing the massive video stream data and ensuring the quality of image frame transmission. To reduce the amount of data and ensure an optimal data transmission rate and quality, we propose a free-space optical video transmission system that applies compressed sensing (CS) algorithms to wireless optical communication systems. Based on the Artix-7 series field programmable gate array (FPGA) chip, we completed the hardware design of the optical wireless video transceiver board; the CS image is transmitted online to the FPGA through Gigabit Ethernet, and the video data is encoded by gigabit transceiver with low power (GTP) and converted into an optical signal, which is relayed to the atmospheric turbulence simulation channel through an attenuator and a collimating mirror. After the optical signal is decoded by photoelectric conversion at the receiving end, the Camera-Link frame grabber is d; thus, the image is collected, and it is reconstructed offline. Herein, the link transmission conditions of different algorithm sampling rates, optical power at the receiving end, and atmospheric coherence length are measured. The experimental results indicate that the encrypt-then-compress (ETC) type algorithm exhibits a more optimal image compression transmission reconstruction performance, and that the 2D compressed sensing (2DCS) algorithm exhibits superior performance. Under the condition that the optical power satisfies the link connectivity, the PSNR value of the reconstructed image is 3-7 dB higher than that of the comparison algorithm. In a strong atmosphere turbulence environment, the peak signal-to-noise ratio (PSNR) of the corresponding reconstructed image under different transmission rates at the receiving end can still exceed 30 dB, ensuring the complete reconstruction of the image.

11.
Opt Express ; 31(22): 36992-37010, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017837

ABSTRACT

A continuous time-domain adaptive power model of transmitter optical and control algorithm based on atmospheric turbulence channel reciprocity are explored for mitigating the free-space optical communication (FSOC) receiver optical intensity scintillation and bit error rate (BER) deterioration. First, a transmitter optical adaptive power control (OAPC) system architecture using four wavelength optical signals based on atmospheric turbulence channel reciprocity is proposed, and electronically variable optical attenuator (EVOA) and erbium-doped fiber amplifier (EDFA) are employed as the main OAPC units for power adaptation. Moreover, a reciprocity evaluation model for gamma-gamma (G-G) continuous-time signals is generated using the autoregressive moving average (ARMA) stochastic process, which takes into account the delay time and system noise, and a reciprocity-based OPAC algorithm is proposed. Numerical simulations were also performed to analyze the signal reciprocity characteristics under different turbulence, noise, and sampling time mismatch at both ends, as well as the scintillation index (SI) performance under OAPC system operation. Simultaneously, the time-domain signals of continuous quadrature amplitude modulation -16 (QAM-16) and QAM-32 real states are fused with the gamma-gamma (G-G) reciprocal turbulence continuous signals to analyze the probability density function (PDF) and bit error ratio (BER) performance after OAPC correction. Finally, a 64 Gpbs QAM-16 OPAC communication experiment was successfully executed based on an atmospheric turbulence simulator. It is shown that the OAPC correction is carried out using reciprocity at millisecond sampling delay, the light intensity scintillation of the communication signal can be well suppressed, the signal-to-noise ratio (SNR) is greatly improved, the suppression is more obvious under strong turbulence, the overall BER reduction is greater than 2.8 orders of magnitude with the OAPC system, and this trend becomes more pronounced as the received power increases, even reach 6 orders of magnitude in some places. This work provides real time-domain continuous signal samples for real signal generation of communication signals in real turbulence environments, adaptive coding modulation using reciprocity, channel estimation, and optical wavefront adaptive suppression, which are the basis of advanced adaptive signal processing algorithms.

12.
Sci Total Environ ; 899: 166437, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37604369

ABSTRACT

Urbanization negatively impacts aboveground biodiversity, such as bird and insect communities. City parks can reduce these negative impacts by providing important habitat. However, it remains poorly understood how the degree of urbanization and vegetation types within city parks (e.g., lawns, woodland) impact soil biodiversity. Here we investigated the impact of the degree of urbanization (urban vs. suburban) and vegetation type (lawn, shrub-lawn, tree-lawn and tree-shrub mixtures) on soil biodiversity in parkland systems. We used eDNA metabarcoding to characterize soil biodiversity of bacteria, fungi, protists, nematodes, meso- and macrofauna across park vegetation types in urban and suburban regions in Xiamen, China. We observed a strong effect of the degree of urbanization on the richness of different soil biota groups, with higher species richness of protists and meso/macrofauna in urban compared to suburban areas, while the richness of bacteria and fungi did not differ, and the difference of nematode richness depended on vegetation type. At the functional level, increased degree of urbanization associated with greater species richness of bacterivores, plant pathogens and animal parasites. These urbanization effects were at least partly modulated by higher soil phosphorous levels in urban compared to suburban sites. Also, the vegetation type impacted soil biodiversity, particularly fungal richness, with the richness of pathogenic and saprotrophic fungi increasing from lawn to tree-shrub mixtures. Tree-shrub mixtures also had the highest connectedness between biotas and lowest variation in the soil community structure. Overall, we show that soil biodiversity is strongly linked to the degree of urbanization, with overall richness increasing with urbanization, especially in bacterivores, plant pathogens and animal parasites. Targeted management of vegetation types in urban areas should provide a useful way to help mitigate the negative effect of urbanization on soil biodiversity.


Subject(s)
Biodiversity , Urbanization , Animals , Biota , China , Soil
13.
Sensors (Basel) ; 23(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37447724

ABSTRACT

In this paper, an atmospheric structure constant Cn2 model is proposed for evaluating the channel turbulence degree of atmospheric laser communication. First, we derive a mathematical model for the correlation between the atmospheric coherence length r0, the isoplanatic angle θ0 and Cn2 using the Hufnagel-Valley (HV) turbulence model. Then, we calculate the seven parameters of the HV model with the actual measured r0 and θ0 data as input quantities, so as to draw the Cn2 profile and the θ0 profile. The experimental results show that the fitted average Cn2 contours and single-day Cn2 contours have superior fitting performance compared with our historical data, and the daily correlation coefficient between the single-day computed θ0 contours and the measured θ0 contours is up to 87%. This result verifies the feasibility of the proposed method. The results validate the feasibility of the proposed method and provide a new technical tool for the inversion of turbulence Cn2 profiles.


Subject(s)
Communication , Environment , Lasers
14.
Environ Sci Technol ; 57(18): 7273-7284, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37097110

ABSTRACT

Our understanding of the role urbanization has in augmenting invasive species that carry human bacterial pathogens and antimicrobial resistance (AMR) remains poorly understood. Here, we investigated the gut bacterial communities, antibiotic resistance genes (ARGs) and potential antibiotic-resistant pathogens in giant African snails (Achatina fulica) collected across an urbanization gradient in Xiamen, China (n = 108). There was a lack of correlation between the microbial profiles of giant African snails and the soils of their habitats, and the resistome and human-associated bacteria were significantly higher than those of native snails as well as soils. We observed high diversity (601 ARG subtypes) and abundance (1.5 copies per 16S rRNA gene) of giant African snail gut resistome. Moreover, giant African snails in more urban areas had greater diversity and abundance of high-risk ARGs and potential human bacterial pathogens (e.g., ESKAPE pathogens). We highlight that urbanization significantly impacted the gut microbiomes and resistomes of these invasive snails, indicating that they harbor greater biological contaminants such as ARGs and potential human bacterial pathogens than native snails and soils. This study advances our understanding of the effect of urbanization on human bacterial pathogens and AMR in a problematic invasive snail and should help combat risks associated with invasive species under the One Health framework.


Subject(s)
Anti-Bacterial Agents , Urbanization , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Genes, Bacterial , Soil
15.
Article in English | MEDLINE | ID: mdl-36833771

ABSTRACT

Heavy metal pollution in urban soil continues to be a global issue that poses a serious hazard to invertebrates and human lives through oral ingestion and inhalation of soil particles. Though the toxicity of several heavy metals on invertebrates like Collembola has been studied, lead (Pb) and cadmium (Cd) have been extensively studied due to their high toxicity to collembolans. As a ubiquitous soil organism all over the world, collembolans have been used as a model species to study the effects of heavy metals on invertebrate communities. To reduce the effects of heavy metals on ecosystem functions, biotic and abiotic measures have been used for heavy metal remediation; biochar seems to be the most effective approach that not only increases the physical absorption of heavy metals but also indirectly benefits soil organisms. In this study, we briefly reviewed the application of biochar in Pb and Cd polluted soil and showed its potential in soil remediation. Furthermore, we outlined the potentially toxic effects of Pb- and Cd-polluted urban soil on the collembolan species. We searched peer-reviewed publications that investigated: (1) the level of Pb and Cd contamination on urban soil in different cities around the world; and (2) the different sources of Pb and Cd as well as factors influencing their toxicity to collembolan communities. The obtained information offers new perspectives on the interactions and effects between collembolans, Pb, and Cd, and their remediation in urban soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Cadmium , Ecosystem , Soil , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal
17.
Opt Express ; 30(19): 34519-34532, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242462

ABSTRACT

The temporal characteristics of the free space optical communication (FSOC) turbulence fading channel are essential for analyzing the bit error rate (BER) performances and compiling the rationale of adaptive signal processing algorithms. However, the investigation is still limited since the majority of temporal sequence generation fails to combine the autocorrelation function (ACF) of the FSOC system parameters, and using the simplified formula results in the loss of detailed information for turbulence disturbances. In this paper, considering the ACF of engineering measurable atmospheric parameters, we propose a continuous-time FSOC channel fading sequence generation model that obeys the Gamma-Gamma (G-G) probability density function (PDF). First, under the influence of parameters such as transmission distance, optical wavelength, scintillation index, and atmospheric structural constant, the normalized channel fading models of ACF and PSD are established, and the numerical solution of the time-domain Gaussian correlation sequence is derived. Moreover, the light intensity generation model obeying the time-domain correlation with statistical distribution information is derived after employing the rank mapping, taking into account the association between the G-G PDF parameters and the large and small scales turbulence fading channels. Finally, the Monte Carlo numerical method is used to analyze the performances of the ACF, PDF, and PSD parameters, as well as the temporal characteristics of the generated sequence, and the matching relationships between these parameters and theory, under various turbulence intensities, propagation distances, and transverse wind speeds. Numerical results show that the proposed temporal sequence generation model highly restores the disturbance information in different frequency bands for the turbulence fading channels, and the agreement with the theoretical solution is 0.999. This study presents essential numerical simulation methods for analyzing and evaluating the temporal properties of modulated signals. When sophisticated algorithms are used to handle FSOC signals, our proposed temporal sequence model can provide communication signal experimental sample data generating techniques under various FSOC parameters, which is a crucial theoretical basis for evaluating algorithm performances.

18.
ISME Commun ; 2(1): 102, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-37938741

ABSTRACT

The size-plasticity hypothesis posits that larger size organisms are less plastic in their metabolic rates and, therefore, are more strongly environmental-filtered than smaller organisms. Many studies have supported this hypothesis by evaluating the relative roles of environmental filtration and dispersal for different taxonomic groups of soil organisms. Most observations are made at large spatial scales, which are assumed to have a wide array of varying habitats. However, since urbanization causes habitat fragmentation at smaller regional scales, testing the size-plasticity hypothesis at this scale would help better understand the spatial assortment of urban soil organisms which, in turn, would help to develop improved management and conservation strategies for urban soil health. Here, we used DNA metabarcoding on five groups of soil biota (bacteria, fungi, protists, nematodes, and invertebrates) to assess the relative importance of dispersal and environmental filters to examine the size-plasticity hypothesis at this spatial scale in an urban environment. We observed strong distance-decay of community similarities associated with higher levels of stochastic changes in bacteria, nematode, and protist communities but not fungal or invertebrate communities. Bacterial communities occupied the widest niche followed by protists and nematodes, potentially because of their higher dispersal abilities compared to the larger soil organisms. Null deviation of communities varied with taxonomic groups where bacteria and nematodes were mainly driven by homogenizing dispersal, protists and fungi by drift, and soil invertebrates by environmental selection. We further identified a small percentage of locally-adapted taxa (2.1%) that could be focal taxa for conservation and restoration efforts by, for example, restoring their habitats and enhancing their regional connectivity. These results support the size-plasticity hypothesis at the relatively unexplored regional scale in an urbanization context, and provide new information for improving urban soil health and sustainable city models.

19.
Sci China Life Sci ; 65(7): 1342-1356, 2022 07.
Article in English | MEDLINE | ID: mdl-34705220

ABSTRACT

Atherosclerotic cardiovascular disease resulting from dysregulated lipid metabolism is the leading cause of morbidity and mortality worldwide. Apolipoprotein E (ApoE) plays a critical role in cholesterol metabolism. Knockouts in lipid-metabolizing proteins including ApoE in multiple model organisms such as mice and rats exhibiting elevated levels of cholesterol have been widely used for dissecting the pathology of atherosclerosis, but few of these animal models exhibit advanced atherosclerotic plaques leading to ischemia-induced clinical symptoms, limiting their use for translational studies. Here we report hypercholesterolemia and severe atherosclerosis characterized by stenosis and occlusion of arteries, together with clinical manifestations of stroke and gangrene, in ApoE knockout dogs generated by CRISPR/Cas9 and cloned by somatic cell nuclear transfer technologies. Importantly, the hypercholesterolemia and atherosclerotic complications in F0 mutants are recapitulated in their offspring. As the ApoE-associated atherosclerosis and clinical manifestations in mutant dogs are more similar to that in human patients compared with those in other animal models, these mutant dogs will be invaluable in developing and evaluating new therapies, including endovascular procedures, against atherosclerosis and related disorders.


Subject(s)
Atherosclerosis , Dogs/genetics , Hypercholesterolemia , Plaque, Atherosclerotic , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol , Disease Models, Animal , Humans , Hypercholesterolemia/complications , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/genetics , Rats
20.
Appl Opt ; 60(19): 5629-5637, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34263855

ABSTRACT

In an all-optical double-hop free-space optical communication system, the outage probability and bit error rate are analyzed using a composite channel. The model involves atmospheric attenuation, atmospheric turbulence, pointing error, and fiber coupling efficiency. Based on analysis of the channel model and amplifier spontaneous emission noise, the outage probability and bit error rate are obtained. For an all-optical double-hop link, fiber coupling efficiency has an important impact on outage probability, especially at relatively short total link length. By compensating for three terms of wavefront distortions, the system outage probability significantly decreases. The communication performance is further improved by optimizing the receiving aperture diameter and beam width.

SELECTION OF CITATIONS
SEARCH DETAIL
...