Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560106

ABSTRACT

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

2.
J Med Virol ; 95(1): e28139, 2023 01.
Article in English | MEDLINE | ID: mdl-36089764

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused extensive loss of life worldwide. Further, the COVID-19 and influenza mix-infection had caused great distress to the diagnosis of the disease. To control illness progression and limit viral spread within the population, a real-time reverse-transcription PCR (RT-PCR) assay for early diagnosis of COVID-19 was developed, but detection was time-consuming (4-6 h). To improve the diagnosis of COVID-19 and influenza, we herein developed a recombinase polymerase amplification (RPA) method for simple and rapid amplification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 and Influenza A (H1N1, H3N2) and B (influenza B). Genes encoding the matrix protein (M) for H1N1, and the hemagglutinin (HA) for H3N2, and the polymerase A (PA) for Influenza B, and the nucleocapsid protein (N), the RNA-dependent-RNA polymerase (RdRP) in the open reading frame 1ab (ORF1ab) region, and the envelope protein (E) for SARS-CoV-2 were selected, and specific primers were designed. We validated our method using SARS-CoV-2, H1N1, H3N2 and influenza B plasmid standards and RNA samples extracted from COVID-19 and Influenza A/B (RT-PCR-verified) positive patients. The method could detect SARS-CoV-2 plasmid standard DNA quantitatively between 102 and 105 copies/ml with a log linearity of 0.99 in 22 min. And this method also be very effective in simultaneous detection of H1N1, H3N2 and influenza B. Clinical validation of 100 cases revealed a sensitivity of 100% for differentiating COVID-19 patients from healthy controls when the specificity was set at 90%. These results demonstrate that this nucleic acid testing method is advantageous compared with traditional PCR and other isothermal nucleic acid amplification methods in terms of time and portability. This method could potentially be used for detection of SARS-CoV-2, H1N1, H3N2 and influenza B, and adapted for point-of-care (POC) detection of a broad range of infectious pathogens in resource-limited settings.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Nucleic Acids , Humans , COVID-19/diagnosis , Influenza, Human/diagnosis , SARS-CoV-2/genetics , Recombinases , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Sensitivity and Specificity , Nucleotidyltransferases , RNA , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
3.
Curr Cancer Drug Targets ; 23(2): 103-117, 2023.
Article in English | MEDLINE | ID: mdl-36028965

ABSTRACT

BACKGROUND: Cancer stem-like cells in triple-negative breast cancer (TNBC-SLCs) are the tumorigenic core for malignancy. Aberrant expression of the RON receptor tyrosine kinase has implications in TNBC tumorigenesis and malignancy. OBJECTIVE: In this study, we identified the RON receptor as a pathogenic factor contributing to TNBC cell stemness and validated anti-RON antibody-drug conjugate Zt/g4-MMAE for eradication of RONexpressing TNBC-SLCs. METHODS: Immunofluorescence and Western blotting were used for analyzing cellular marker expression. TNBC-SLCs were isolated by magnetic-immunofluorescence cell-sorting techniques. Spheroids were generated using the ultralow adhesion culture methods. Levels of TNBC-SLC chemosensitivity were determined by MTS assays. TNBC-SLC mediated tumor growth was determined in athymic nude mice. The effectiveness of Zt/g4-induced RON internalization was measured by immunofluorescence analysis. Efficacies of Zt/g4-MMAE in killing TNBC-SLCs in vitro and in eradicating TNBC-SLCmediated tumors were determined in mouse models. All data were statistically analyzed using the GraphPad Prism 7 software. RESULTS: Increased RON expression existed in TNBC-SLCs with CD44+/CD24- phenotypes and ALDH activities and facilitated epithelial to mesenchymal transition. RON-positive TNBC-SLCs enhanced spheroid-formatting capability compared to RON-negative TNBC-SLCs, which were sensitive to small molecule kinase inhibitor BMS-777607. Increased RON expression also promoted TNBC-SLC chemoresistance and facilitated tumor growth at an accelerated rate. In vitro, Zt/g4-MMAE caused massive TNBC-SLC death with an average IC50 value of ~1.56 µg per/ml and impaired TNBC cell spheroid formation. In mice, Zt/g4-MMAE effectively inhibited and/or eradicated TNBC-SLC mediated tumors in a single agent regimen. CONCLUSION: Sustained RON expression contributes to TNBC-SLC tumorigenesis. Zt/g4-MMAE is found to be effective in vivo in killing TNBC-SLC-mediated xenograft tumors. Our findings highlight the feasibility of Zt/g4-MMAE for the eradication of TNBC-SLCs in the future.


Subject(s)
Immunoconjugates , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Mice, Nude , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Antibodies, Monoclonal/therapeutic use , Carcinogenesis , Stem Cells
4.
Curr Cancer Drug Targets ; 22(4): 312-327, 2022.
Article in English | MEDLINE | ID: mdl-34951367

ABSTRACT

BACKGROUND: Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials. OBJECTIVE: Here, we report the preclinical and therapeutic evaluation of a novel anti-MET antibody- drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy. METHODS: The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines. RESULTS: Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted the cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg body weight. Taken together, PCMC1D3-DCM was effective in targeting the inhibition of tumor growth in xenograft models. CONCLUSION: This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.


Subject(s)
Immunoconjugates , Neoplasms , Animals , Body Weight , Cell Line, Tumor , Duocarmycins , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mice , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met , Xenograft Model Antitumor Assays
5.
Virol J ; 18(1): 237, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34844617

ABSTRACT

BACKGROUND: The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus. METHODS: Infection of mice with A/Guangdong/GZ8H002/2017(H7N9) virus was achieved via nasal inoculation. Mice were killed at 2, 3, and 7 days post infection. The other mice were used to observe their illness status and weight changes. Reverse transcription polymerase chain reaction and viral isolation were used to analyse the characteristics of viral invasion. The pathological changes of the main organs were observed using haematoxylin and eosin staining and immunohistochemistry. RESULTS: The weight of H7N9 virus-infected mice increased slightly in the first two days. However, the weight of the mice decreased sharply in the following days, by up to 20%. All the mice had died by the 8th day post infection and showed multiple organ injury. The emergence of viremia in mice was synchronous with lung infection. On the third day post infection, except in the brain, the virus could be isolated from all organs (lung, heart, kidney, liver, and spleen). On the seventh day post infection, the virus could be detected in all six organs. Brain infection was detected in all mice, and the viral titre in the heart, kidney, and spleen infection was high. CONCLUSION: Acute diffuse lung injury was the initial pathogenesis in highly pathogenic H7N9 virus infection. In addition to lung infection and viremia, the highly pathogenic H7N9 virus could cause multiple organ infection and injury.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Lung/pathology , Mice , Mice, Inbred BALB C
6.
Hepatobiliary Pancreat Dis Int ; 20(6): 530-534, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34548225

ABSTRACT

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with high mortality. The incidence of HCC is increasing in China. Abnormal activation of glucose-6-phosphate dehydrogenase (G6PD) exists in all malignant tumors, including HCC, and is closely related to the development of HCC. In addition, the differential expression of non-coding RNAs is closely related to the development of HCC. This systematic review focuses on the relationship between G6PD, HCC, and non-coding RNA, which form the basis for the circRNA/miRNA/G6PD axis in HCC. The circular RNA (circRNA)/microRNA (miRNA)/G6PD axis is involved in development of HCC. We proposed that non-coding RNA molecules of the circRNA/miRNA/G6PD axis may be novel biomarkers for the pathological diagnosis, prognosis, and targeted therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
7.
J Tradit Chin Med ; 41(4): 515-522, 2021 08.
Article in English | MEDLINE | ID: mdl-34392643

ABSTRACT

OBJECTIVE: To investigate the mechanism of honokiol (HNK) on bladder cancer cells and its synergistic anticancer effect with hydroxycamptothecin (HCPT). METHODS: Control, HNK, HCPT, and HNK plus HCPT groups were established. The morphological characteristics of T24 cells were examined microscopically. The maximal experimental concentration of HNK and HCPT were determined according to IC10 detected by MTT. T24 cell viability and the percentage of apoptotic cells were assessed on the basis of MTT and flow cytometric analysis. The expression of caspase-3, caspase-9, phosphorylated nuclear factor-kappa B (NF-κB)-p65, Akt, and extracellular signal-regulated kinase (ERK) proteins were analyzed by Western blot. RESULTS: Apoptosis in T24 cells was observed microscopically in both the HNK and HCPT groups and even more obvious in the HNK plus HCPT groups. The percentage of T24 cell viability decreased down to 19.41% , and the percentage of apoptotic cells rose to 54.08% when treated with HNK plus HCPT in an HNK dose-dependent manner. The induction of caspase-3 and caspase-9 proteins and the inhibition of phosphorylation of NF-κB-p65, Akt, and ERK proteins in T24 cells were demonstrated in the HNK groups, and more significantly in the HNK plus HCPT groups, but not in the HCPT group. CONCLUSION: The anticancer effect of HNK may be due to the activation of the caspase pathway and inhibition of phosphorylation of NF-κB, Akt, and ERK. HNK in combination with HCPT produces a synergistic cell-killing effect on bladder cancer cells.


Subject(s)
Camptothecin , Lignans , Apoptosis , Biphenyl Compounds , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Line, Tumor , Lignans/pharmacology
8.
Drug Discov Today ; 26(8): 1857-1874, 2021 08.
Article in English | MEDLINE | ID: mdl-34224904

ABSTRACT

Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.


Subject(s)
Antineoplastic Agents/administration & dosage , Duocarmycins/administration & dosage , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Drug Development/methods , Drug Evaluation, Preclinical/methods , Duocarmycins/pharmacokinetics , Duocarmycins/pharmacology , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology
9.
World J Gastroenterol ; 27(20): 2507-2520, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34092972

ABSTRACT

The receptor protein tyrosine kinase RON belongs to the c-MET proto-oncogene family. Research has shown that RON has a role in cancer pathogenesis, which places RON on the frontline of the development of novel cancer therapeutic strategies. Hepatobiliary and pancreatic (HBP) cancers have a poor prognosis, being reported as having higher rates of cancer-related death. Therefore, to combat these malignant diseases, the mechanism underlying the aberrant expression and signaling of RON in HBP cancer pathogenesis, and the development of RON as a drug target for therapeutic intervention should be investigated. Abnormal RON expression and signaling have been identified in HBP cancers, and also act as tumorigenic determinants for HBP cancer malignant behaviors. In addition, RON is emerging as an important mediator of the clinical prognosis of HBP cancers. Thus, not only is RON significant in HBP cancers, but also RON-targeted therapeutics could be developed to treat these cancers, for example, therapeutic monoclonal antibodies and small-molecule inhibitors. Among them, antibody-drug conjugates have become increasingly popular in current research and their potential as novel anti-cancer biotherapeutics will be determined in future clinical trials.


Subject(s)
Immunoconjugates , Pancreatic Neoplasms , Humans , Antibodies, Monoclonal , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Mas , Signal Transduction
10.
Ther Adv Med Oncol ; 13: 17588359211006957, 2021.
Article in English | MEDLINE | ID: mdl-33868463

ABSTRACT

Aberrant expression and/or activation of the MET receptor tyrosine kinase is characterized by genomic recombination, gene amplification, activating mutation, alternative exon-splicing, increased transcription, and their different combinations. These dysregulations serve as oncogenic determinants contributing to cancerous initiation, progression, malignancy, and stemness. Moreover, integration of the MET pathway into the cellular signaling network as an addiction mechanism for survival has made this receptor an attractive pharmaceutical target for oncological intervention. For the last 20 years, MET-targeting small-molecule kinase inhibitors (SMKIs), conventional therapeutic monoclonal antibodies (TMABs), and antibody-based biotherapeutics such as bispecific antibodies, antibody-drug conjugates (ADC), and dual-targeting ADCs have been under intensive investigation. Outcomes from preclinical studies and clinical trials are mixed with certain successes but also various setbacks. Due to the complex nature of MET dysregulation with multiple facets and underlying mechanisms, mechanism-based validation of MET-targeting therapeutics is crucial for the selection and validation of lead candidates for clinical trials. In this review, we discuss the importance of various types of mechanism-based pharmaceutical models in evaluation of different types of MET-targeting therapeutics. The advantages and disadvantages of these mechanism-based strategies for SMKIs, conventional TMABs, and antibody-based biotherapeutics are analyzed. The demand for establishing new strategies suitable for validating novel biotherapeutics is also discussed. The information summarized should provide a pharmaceutical guideline for selection and validation of MET-targeting therapeutics for clinical application in the future.

12.
World J Gastrointest Oncol ; 12(11): 1216-1236, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33250957

ABSTRACT

BACKGROUND: Programmed death ligand 1 (PD-L1) immunotherapy remains poorly efficacious in colorectal cancer (CRC). The recepteur d'origine nantais (RON) receptor tyrosine kinase plays an important role in regulating tumor immunity. AIM: To identify the patterns of RON and PD-L1 expression and explore their clinical significance in CRC. METHODS: Gene expression data from the Gene Expression Omnibus database (GEO; n = 290) and patients at the First Affiliated Hospital, Zhejiang University School of Medicine (FAHZUSM; n = 381) were analyzed to determine the prognostic value of RON and PD-L1 expression within the tumor microenvironment of CRC. HT29 cell line was treated with BMS-777607 to explore the relationship between RON activity and PD-L1 expression. Signaling pathways and protein expression perturbed by RON inhibition were evaluated by cellular immunofluorescence and Western blot. RESULTS: In the GEO patient cohort, cut-off values for RON and PD-L1 expression were determined to be 7.70 and 4.3, respectively. Stratification of patients based on these cutoffs demonstrated that high expression of RON and PD-L1 was associated with a poor prognosis. In the FAHZUSM cohort, rates of high expression of RON in tumor cells, high PD-L1 expression in tumor cells and tumor infiltrating monocytes, and both high RON and high PD-L1 expression in the tumor microenvironment were 121 (32%), 43 (11%), 91 (24%), and 51 (13.4%), respectively. High expression of RON was significantly correlated with high expression of PD-L1 in the tumor cell compartment (P < 0.001). High expression of RON and that of PD-L1 were independent prognostic factors for poorer overall survival. Concurrent high expression of both RON and PD-L1 in the tumor microenvironment was significantly associated with a poor prognosis. In vitro, BMS-777607 inhibited the phosphorylation of RON, inhibited PD-L1 expression, and attenuated activation of the ERK1/2 and AKT signaling pathways in CRC cells. CONCLUSION: RON, PD-L1, and their crosstalk are significant in predicting the prognostic value of CRC. Moreover, phosphorylation of RON upregulates PD-L1 expression, which provides a novel approach to immunotherapy in CRC.

13.
J Exp Clin Cancer Res ; 39(1): 198, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32962738

ABSTRACT

Advanced colorectal adenocarcinoma (CRAC), featured by distinctive histopathological appearance, distant organ metastasis, acquired chemoresistance, and tumorigenic stemness is a group of heterogeneous cancers with unique genetic signatures and malignant phenotypes. Treatment of CRAC is a daunting task for oncologists. Currently, various strategies including molecular targeting using therapeutic monoclonal antibodies, small molecule kinase inhibitors and immunoregulatory checkpoint therapy have been applied to combat this deadly disease. However, these therapeutic modalities and approaches achieve only limited success. Thus, there is a pharmaceutical need to discover new targets and develop novel therapeutics for CRAC therapy. MET and RON receptor tyrosine kinases have been implicated in CRAC pathogenesis. Clinical studies have revealed that aberrant MET and/or RON expression and signaling are critical in regulating CRAC progression and malignant phenotypes. Increased MET and/or RON expression also has prognostic value for CRAC progression and patient survival. These features provide the rationale to target MET and RON for clinical CRAC intervention. At present, the use of small molecule kinase inhibitors targeting MET for CRAC treatment has achieved significant progress with several approvals for clinical application. Nevertheless, antibody-based biotherapeutics, although under clinical trials for more than 8 years, have made very little progress. In this review, we discuss the importance of MET and/or RON in CRAC tumorigenesis and development of anti-MET, anti-RON, and MET and RON-dual targeting antibody-drug conjugates for clinical application. The findings from both preclinical studies and clinical trials highlight the potential of this novel type of biotherapeutics for CRAC therapy in the future.


Subject(s)
Adenocarcinoma/drug therapy , Colorectal Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/genetics , Receptor Protein-Tyrosine Kinases/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Mice , Molecular Targeted Therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Small Molecule Libraries/therapeutic use , Xenograft Model Antitumor Assays
14.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188425, 2020 12.
Article in English | MEDLINE | ID: mdl-32961258

ABSTRACT

Advanced epithelial cancers such as gastric, lung, and pancreatic tumors are featured by invasive proliferation, distant metastasis, acquired chemoresistance, and tumorigenic stemness. For the last decade, molecular-targeted therapies using therapeutic antibodies, small molecule kinase inhibitors and immune-checkpoint blockades have been applied for these diseases with significant clinical benefits. Nevertheless, there is still a large gap to achieve curative outcomes. MET (mesenchymal-epithelial transition protein), a receptor tyrosine kinase, is a tumorigenic determinant that regulates epithelial cancer initiation, progression, and malignancy. Increased MET expression also has prognostic value for cancer progression and patient survival. These features provide the rationale to target MET for cancer treatment. In this review, we discuss the importance of MET in epithelial tumorigenesis and the development of antibody-based biotherapeutics, including bispecific antibodies and antibody-drug conjugates, for clinical application. The findings from both preclinical and clinical studies highlight the potential of MET-targeted biotherapeutics for cancer therapy in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy
15.
Exp Ther Med ; 20(2): 1621-1629, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32742394

ABSTRACT

The inflammatory response has been implicated in various cardiac and systemic diseases. Epigallocatechin-3-gallate (EGCG), the major polyphenol extracted from green tea, has various biological and pharmacological properties, such as anti-inflammation, anti-oxidative and anti-tumorigenesis. To some extent, the mechanism of EGCG in the inflammatory response that characterizes myocardial dysfunction is not fully understood. The present study aimed to investigate the inhibiting effect of EGCG on lipopolysaccharide (LPS)-induced inflammation in vitro. Treatment with LPS affected rat H9c2 cardiomyocytes and induced an inflammatory response. However, the LPS-induced effects were attenuated after treatment with EGCG. The present results demonstrated that EGCG treatment repressed several inflammatory mediators, such as vascular endothelial growth factor, chemokine ligand 5, chemokine ligand 2, intercellular adhesion molecule-1, matrix metalloproteinase-2, tumor necrosis factor-α and nitric oxide (induced by LPS), and the repressing effect of EGCG on inflammatory response was dose-dependent in the range of 6.25-100 µM. EGCG inhibited these marked inflammatory key signaling molecules by reducing the expression of phospho-nuclear factor-κB p65, -Akt, -ERK and -MAPK p38 while the total protein level of these signal proteins were not affected. In conclusion, the present findings suggested that EGCG possesses cardiomyocyte-protective action in reducing the LPS-induced inflammatory response due to the inhibition of the phosphorylation of Akt and ERK signaling molecules.

16.
Drug Discov Today ; 25(7): 1160-1173, 2020 07.
Article in English | MEDLINE | ID: mdl-32479905

ABSTRACT

Treatment of triple-negative breast cancer (TNBC) is a challenge to oncologists. Currently, the lack of effective therapy has fostered a major effort to discover new targets and therapeutics to combat this disease. The recepteur d'origine nantais (RON) receptor has been implicated in the pathogenesis of TNBC. Clinical studies have revealed that aberrant RON expression is crucial in regulating TNBC malignant phenotypes. Increased RON expression also has prognostic value for breast cancer progress. These features provide the rationale to target RON for TNBC treatment. In this review, we discuss the importance of RON in TNBC tumorigenesis and the development of anti-RON antibody-drug conjugates (ADCs) for clinical application. The findings from preclinical studies lay the foundation for clinical trials of this novel biotherapeutic for TNBC therapy.


Subject(s)
Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Female , Humans , Prognosis , Triple Negative Breast Neoplasms/metabolism
17.
Ther Adv Med Oncol ; 12: 1758835920920069, 2020.
Article in English | MEDLINE | ID: mdl-32426050

ABSTRACT

The recepteur d'origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody-drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.

18.
Int Immunopharmacol ; 85: 106558, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32450532

ABSTRACT

To investigate the main transcriptional and biological changes of human host during low and highly pathogenic avian H7N9 influenza virus infection and to analyze the possible causes of escalated virulence and the systematic progression of H7N9 virus infection, we utilized whole transcriptome sequencing (RNA-chip and RNA-seq) and other biomolecular methods to analyze and verify remarkable changes of host cells during these two subtypes of H7N9 influenza viruses infection. Whole transcriptome analysis showed the global profiles of differentially expressed genes (DEGs) and identified 458 DEGs associated with major changes in biological processes of the host cells after infection with 2017 HPAI H7N9 virus versus 2013 LPAI H7N9 virus, mainly including drastically increased defense responses to viruses (e.g. negative regulation of viral gene replication), IFNs related pathways, immune response/native immune response, and inflammatory response. Genes of programmed cell death 1 (PD-1) pathways were found changed remarkably and several highly correlated non-coding RNAs were identified. The results suggested that HPAI H7N9 virus induces stronger immune response and suppressing response than LPAI H7N9. Meanwhile, PD-1/PD-Ls signaling pathways work together in regulating host responses including antiviral defense, lethal inflammation caused by the virus and immune response, thus contribute to the high pathogenicity of 2017H7N9 virus that can be regulated by non-coding RNAs. The present study represents a comprehensive understanding and good reference of regulation of pathogenicity of H7N9 virus even other fatal viruses and correlated host immune responses.


Subject(s)
B7-H1 Antigen/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/immunology , Programmed Cell Death 1 Receptor/immunology , A549 Cells , Animals , Cytokines/immunology , Dogs , Female , Gene Expression Profiling , Humans , Influenza, Human/genetics , Madin Darby Canine Kidney Cells , Male , Middle Aged , Signal Transduction , Transcriptome , Up-Regulation
19.
Cancer Res Treat ; 52(3): 973-986, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32324988

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) is highly malignant and has poor prognosis and a high mortality rate. The lack of effective therapy has spurred our investigation of new targets for treating this malignant cancer. Here, we identified RON (macrophage-stimulating 1 receptor) and MET (MET proto-oncogene, receptor tyrosine kinase) as a prognostic biomarker and therapeutic targets for potential TNBC treatment. MATERIALS AND METHODS: We analyzed RON and MET expression in 187 primary TNBC clinical samples with immunohistochemistry. We validated the targeted therapeutic effects of RON and MET in TNBC using three tyrosine kinase inhibitors (TKIs): BMS-777607, INCB28060, and tivantinib. The preclinical therapeutic efficacy of the TKIs was mainly estimated using a TNBC xenograft model. RESULTS: Patients with TNBC had widespread, abnormal expression of RON and MET. There was RON overexpression, MET overexpression, and RON and MET co-overexpression in 63 (33.7%), 63 (33.7%), and 43 cases (23.0%), respectively, which had poor prognosis and short survival. In vivo, the TKI targeting RON ant MET inhibited the activation of the downstream signaling molecules, inhibited TNBC cell migration and proliferation, and increased TNBC cell apoptosis; in the xenograft model, they significantly inhibited tumor growth and shrank tumor volumes. The TKI targeting RON and Met, such as BMS-777607 and tivantinib, yielded stronger anti-tumor effects than INCB28060. CONCLUSION: RON and MET co-overexpression can be significant pathological characteristics in TNBC for poor prognosis. TKIs targeting RON and MET have stronger drug development potential for treating TNBC.


Subject(s)
Biomarkers, Tumor/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Triple Negative Breast Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Middle Aged , Prognosis , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics , Receptor Protein-Tyrosine Kinases/genetics , Survival Rate , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Biochim Biophys Acta Rev Cancer ; 1873(2): 188360, 2020 04.
Article in English | MEDLINE | ID: mdl-32234337

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with poor prognosis and high mortality. Molecular aberrations associated with PDAC pathogenesis and progression have been extensively investigated. Nevertheless, these findings have not been translated into clinical practice. Lack of therapeutics for PDAC treatment is another challenge. Recent application of molecularly targeted and immunoregulatory therapies appears to be disappointing. Thus, discovery of new targets and therapeutics is urgently needed to combat this malignant disease. The RON receptor tyrosine kinase is a tumorigenic determinant in PDAC malignancy, which provides the rationale to target RON for PDAC treatment. In this review, we summarize the latest evidence of RON in PDAC pathogenesis and the development of anti-RON antibody-drug conjugates for potential PDAC therapy. The finding that anti-RON antibody-drug conjugates show efficacy in preclinical animal models highlights the potential of this novel class of anti-cancer biotherapeutics in future clinical trials.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Immunoconjugates/pharmacology , Pancreatic Neoplasms/drug therapy , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Humans , Immunoconjugates/therapeutic use , Molecular Targeted Therapy/methods , Pancreas/drug effects , Pancreas/pathology , Pancreatic Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...