Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 351: 122803, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38857653

ABSTRACT

Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.


Subject(s)
Amino Acids , Ferroptosis , Iron , Ferroptosis/physiology , Humans , Amino Acids/metabolism , Animals , Iron/metabolism , Homeostasis/physiology , Oxidation-Reduction , Lipid Metabolism
2.
Food Chem ; 447: 138954, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461716

ABSTRACT

Real-time optical sensing of mercury has been developed rapidly in recent years but remains challenging such as bearing background interference. Herein, a Hg2+ and base dual-activatable ultrasensitive chemiluminescent probe CL-Hg based on benzothiazole-phenoxyl-dioxetane with profits of excitation light-free and minimal interference is presented. The photophysical properties study and sensing performance verified CL-Hg is coupled with unique advantages of long-term detection (more than 400 min), ultrahigh sensitivity (LOD = 0.52 nM), and high specificity to Hg2+, and visualization detection by the paper-based test strips. More importantly, CL-Hg showed the qualitative and quantitative detection capability for Hg2+ with great recyclability in real samples of water, seafood, and beverages, holding great potential for on-site monitoring of Hg2+ levels in the actual samples. To our knowledge, this is the first work achieving the detection of Hg2+ by chemiluminescence. Overall, the Hg2+-activated visualization platform offers a practical method for detecting Hg2+ in various application scenarios.


Subject(s)
Mercury , Mercury/analysis , Water , Beverages , Fluorescent Dyes
SELECTION OF CITATIONS
SEARCH DETAIL