Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.290
Filter
1.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Article in English | MEDLINE | ID: mdl-38974120

ABSTRACT

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Subject(s)
Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Ferroptosis , Liver Neoplasms , Pollen , Schisandra , Humans , Cell Proliferation/drug effects , Cell Movement/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Hep G2 Cells , Animals , Schisandra/chemistry , Pollen/chemistry , Ferroptosis/drug effects , Bees/chemistry , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Wnt Signaling Pathway/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Signal Transduction/drug effects , Biological Products , Polyphenols
2.
Sci Total Environ ; : 174499, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971240

ABSTRACT

Improving the removal effect of selenium in wet flue gas desulfurization system is a key way to reduce the emission of selenium pollutants from coal-fired power plants. In order to clarify the removal mechanism of selenium pollutants in the desulfurization tower, it is necessary to obtain accurate selenium gas-phase diffusion coefficient. In this paper, molecular dynamics simulations were used to carry out theoretical calculations of gas-phase diffusion coefficients of SeO2 (the main form of selenium in coal combustion flue gas). The gas-phase diffusion coefficients of SeO2 in the range of 393 K-433 K were measured by a self-developed heavy metal gas diffusion coefficient testing device to verify the accuracy of the molecular dynamics calculations. Furthermore, the calculated gas-phase diffusion coefficients of SeO2 under typical binary and ternary components were obtained by correcting on the basis of Fuller's formula. Finally, a single-droplet absorption model for SeO2 was constructed and experiments were carried out to compare the effect of the gas-phase diffusion coefficient on the accuracy of the model calculations. The error of the model calculations was reduced from 8.09 % to 1.96 % after the correction. In this study, the gas-phase diffusion coefficient of SeO2 in the low-temperature range of coal-fired flue gas was obtained. This study can provide basic data for the development of selenium migration mechanism and control technology.

3.
J Med Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968440

ABSTRACT

Herein, a series of novel arylpiperazine (piperidine) derivatives were designed, synthesized, and evaluated for mechanisms of action through in vitro and in vivo studies. The most promising compound, II-13 (later named as MT-1207), is a potent α1 and 5-HT2A receptor antagonist with remarkable IC50 in the picomolar level. Importantly, in the in vivo assay, II-13 achieved an effective blood pressure (BP) reduction in the 2K2C rat model without damaging renal function. Compound II-13, with its significant advantages in terms of pharmacological effects, pharmacokinetic parameters, and a large safety window, was extensively investigated. Moreover, data also showed that compound II-13 had fewer side effects in a postural BP assay and could prevent the onset of postural hypotension. Together, these results suggested that compound II-13 is a highly potent antihypertensive drug candidate with multitarget mechanisms of action in preclinical models. Currently, MT-1207 is in phase II hypertensive clinical trials in China.

4.
IEEE Trans Circuits Syst II Express Briefs ; 71(7): 3298-3302, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961880

ABSTRACT

This brief presents an on-chip digital intensive frequency-locked loop (DFLL)-based wakeup timer with a time-domain temperature compensation featuring a embedded temperature sensor. The proposed compensation exploits the deterministic temperature characteristics of two complementary resistors to stabilize the timer's operating frequency across the temperature by modulating the activation time window of the two resistors. As a result, it achieves a fine trimming step (± 1 ppm), allowing a small frequency error after trimming (<± 20 ppm). By reusing the DFLL structure, instead of employing a dedicated sensor, the temperature sensing operates in the background with negligible power (2 %) and hardware overhead (< 1 %). The chip is fabricated in 40 nm CMOS, resulting in 0.9 pJ/cycle energy efficiency while achieving 8 ppm/ºC from -40ºC to 80ºC.

5.
Neuro Oncol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989697

ABSTRACT

BACKGROUND: Managing non-functioning pituitary adenomas (NFPAs) is difficult due to limited drug treatments. Cabergoline's (CAB) effectiveness for NFPAs is debated. This study explores the role of HTR2B in NFPAs and its therapeutic potential. METHODS: We conducted screening of bulk RNA-sequencing data to analyze HTR2B expression levels in NFPA samples. In vitro and in vivo experiments were performed to evaluate the effects of HTR2B modulation on tumor growth and cell cycle regulation. Mechanistic insights into the HTR2B-mediated signaling pathway were elucidated using pharmacological inhibitors and molecular interaction assays. RESULTS: Elevated HTR2B expression was detected in NFPA samples, which was associated with increased tumor survival. Inhibition of HTR2B activity resulted in the suppression of tumor growth through modulation of the G2M cell cycle. The inhibition of HTR2B with PRX-08066 was found to block STAT3 phosphorylation and nuclear translocation by interfering with the Gαq/PLC/PKC pathway. A direct interaction between PKC-γ and STAT3 was critical for STAT3 activation. CAB was shown to activate pSTAT3 via HTR2B, reducing its therapeutic potential. However, the combination of an HTR2B antagonist with CAB significantly inhibited tumor cell proliferation in HTR2B-expressing pituitary tumor cell lines, a xenografted pituitary tumor model, and patient-derived samples. Analysis of patient-derived data indicated that a distinct molecular pattern characterized by upregulated HTR2B/PKC-γ and downregulated BTG2/GADD45A may benefit from combination treatment with CAB and PRX-08066. CONCLUSIONS: HTR2B is a potential therapeutic target for NFPAs, and its inhibition could improve CAB efficacy. A dual therapy approach may be beneficial for NFPA patients with high HTR2B expression.

6.
Article in English | MEDLINE | ID: mdl-38956905

ABSTRACT

BACKGROUND: Spindle cell carcinoma (SCC) of the breast is a rare type of metaplastic carcinoma with poor prognosis, high recurrence, and distant metastasis. Mammectomy, chemotherapy, radiotherapy, and endocrine therapy are the preferred choices of treatments. Tumor-infiltrating lymphocyte (TIL) therapy, which utilizes the patient's immune cells from the solid tumor micro-environment to eradicate cancer cells, has shown promising results in treating advanced solid tumors. However, its use for SCC of the breast has not been reported. CASE PRESENTATION: Here, we present a case of combining TIL therapy with personalized chemotherapy and endocrine therapy for the treatment of SCC of the breast. A 36-year-old Chinese woman presented with a palpable nodule (32 mm) on her left breast. Based on histological and immunohistochemical analysis of breast biopsy and surgical specimens, she was diagnosed with SCC of the breast (stage IIA). The patient received concurrent personalized chemotherapy, TIL therapy, and endocrine therapy following mammectomy. She showed no severe side effects during therapy, and did not present local recurrence or distant metastasis after follow-up for at least 14 months. CONCLUSION: To our knowledge, this is the first case report, which demonstrated that TIL therapy combined with chemotherapy/endocrine therapy after mastectomy is safe and effective for SCC of the breast.

7.
Bioresour Technol ; 406: 131015, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906196

ABSTRACT

Combining iron-carbon micro-electrolysis and autotrophic denitrification is promising for nitrate removal from wastewater. In this study, four continuous reactors were constructed using CO2 and weak magnetic field (WMF) to address challenges like iron passivation and pH stability. In the reactors with CO2 + WMF (10 and 35 mT), the increase in total nitrogen removal efficiency was significantly higher (96.2 ± 1.6 % and 94.1 ± 2.7 %, respectively) than that of the control (51.6 ± 2.7 %), and Fe3O4 converted to low-density FeO(OH) and FeCO3, preventing passivation film formation. The WMF application decreased the N2O emissions flux by 8.7 % and 20.5 %, respectively. With CO2 + WMF, the relative enzyme activity and abundance of denitrifying bacteria, especially unclassified_Rhodocyclaceae and Denitratisoma, increased. Thus, this study demonstrates that CO2 and WMF optimize the nitrate removal process, significantly enhancing removal efficiency, reducing greenhouse gas emissions, and improving process stability.

8.
J Phys Condens Matter ; 36(37)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38848731

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides lateral heterostructures exhibit excellent performance in electrics and optics. The electron transport of the heterostructures can be effectively regulated by ingenious design. In this study, we construct a monolayer MoSe2/WSe2lateral heterostructure, covalently connecting monolayer MoSe2and monolayer WSe2. Using the Extended Huckel Theory method, we explored current-voltage characteristics under varied conditions, including altering carrier density, atomic replacement and interface angles. Calculations demonstrate a significant electrical rectification ratio (ERR) ranging from 200 to 800. Additionally, Employing Density Functional Theory with non-equilibrium Green's function method, we investigated electronic properties, attributing the rectification effect to electronic state distribution differences, asymmetric transmission coefficients and band bending of projected local density of states. The expandability of the interfacial energy barrier enhances the rectification effect through adjustments in carrier concentration, atomic replacements and interface size. However, these enhancements introduce challenges such as increased electron-boundary scattering and reduced ambipolarity, resulting in a lower ERR. This study provides valuable theoretical insights for optimizing 2D electronic diode devices, offering avenues for precise control of the rectification effect.

9.
Gene ; : 148735, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944166

ABSTRACT

BACKGROUND: OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS: The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS: OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS: In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.

10.
Chem Commun (Camb) ; 60(55): 6988-6998, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38895748

ABSTRACT

Lead halide perovskite nanocrystals (PNCs) hold immense promise in high-performance light-emitting diodes (LEDs) for future high-definition displays. Their adjustable bandgaps, vivid colors, and good carrier mobility are key factors that make them a potential game-changer. However, to fully harness their potential, the efficiency and long-term stability of PNCs-based light-emitting diodes (PNC-LEDs) must be enhanced. Recent material research results have shed light on the leading cause of performance decline in PNC-LEDs, which is ionic migration linked to surface defects and grain boundary imperfections. This review aims to present recent advancements in the modification strategies of PNCs, focusing on obtaining high-quality PNCs for LEDs. The PNC modification strategies are first summarized, including crystal structure regulation, nanocrystal size tuning, ligand exchange, and surface passivation. Then, the effects of these material design aspects on LED device performances, such as efficiency, brightness, and stability, are presented. Based on the efficient modification strategies, we propose promising material design insights for efficient and stable PNC-LEDs.

11.
Int J Biol Macromol ; 272(Pt 1): 132744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834122

ABSTRACT

Dictyophora indusiata is a common edible mushroom with great potential in the field of medicine against metabolic disorders, inflammation, and immunodeficiency. Our previous studies have shown that different fractions of the polysaccharide from Dictyophora indusiata (DIP) have various structural characteristics and morphology. However, the impact of the structural features on the protective effects of DIP against metabolic syndrome remains unclear. In this study, three distinct polysaccharide fractions have been extracted from Dictyophora indusiata and a high-fat diet-induced metabolic syndrome (MetS) was constructed in mice. The effects of these fractions on a range of MetS-associated endpoints, including abnormal blood glucose, lipid profiles, body fat content, liver function, intestinal microbiota and their metabolites were investigated. Through correlation analysis, the potential link between the monosaccharide composition of the polysaccharides and their biological activities was determined. The study aimed to explore the potential mechanisms and ameliorative effects of these polysaccharide fractions on MetS, thereby providing statistical evidence for understanding the relationship between monosaccharides composition of Dictyophora indusiata polysaccharides and their potential utility in treating metabolic disorders.


Subject(s)
Diet, High-Fat , Metabolic Syndrome , Animals , Metabolic Syndrome/drug therapy , Mice , Diet, High-Fat/adverse effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Male , Monosaccharides/analysis , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gastrointestinal Microbiome/drug effects , Basidiomycota/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Blood Glucose/drug effects , Blood Glucose/metabolism , Disease Models, Animal , Agaricales/chemistry
12.
J Cosmet Dermatol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864461

ABSTRACT

BACKGROUND: In vitro single-cell experiments may yield inconsistent results compared to clinical trials. To enhance the reliability of cosmetic active ingredient screening, a coculture model of B16F10-HaCaT cells was established in vitro based on the structural characteristics of human skin, thereby improving the credibility of experimental outcomes. Currently, most cosmetic whitening additives primarily target simple efficacy goals such as inhibiting tyrosinase activity or melanin transfer. Therefore, investigating novel and efficient whitening additives has become a prominent research focus. OBJECTIVES: The aim is to establish an in vitro cell coculture model for more reliable experimental results and investigate the mechanism by which Paeonia lactiflora Pall seeds oil inhibits melanin production and transfer. METHODS: The impact of different concentrations of Paeonia lactiflora Pall seeds oil on cocultured cell proliferation rate was assessed using cck8 assay. Tyrosinase inhibition ability in cocultured cells was tested using levodopa as a substrate. Melanin production inhibition ability in coculture cells was evaluated by lysing cells with sodium hydroxide. The effect of Paeonia lactiflora Pall seeds oil on dendrite-related gene expression levels was examined through qPCR analysis. Additionally, Western blotting was employed to study the effect of Paeonia lactiflora Pall seeds oil on dendrite-related protein expression levels. RESULTS: Different concentrations of Paeonia lactiflora Pall seeds oil did not affect the proliferation activity of cocultured cells. A specific concentration of α-MSH increased cell tyrosinase activity, cellular melanin content, as well as Rac1, Cdc42, and PAR-2 gene and protein expression related to dendritic formation. Treatment with a certain concentration of Paeonia lactiflora Pall seeds oil resulted in decreased tyrosinase activity and melanin content in cells along with downregulated expression levels of Rac1, Cdc42, and PAR-2 genes and proteins associated with dendritic formation. CONCLUSIONS: Paeonia lactiflora Pall seeds oil at specific concentrations exhibits the ability to inhibit tyrosinase activity, decrease melanin content, and possesses the potential to impede melanin transfer.

13.
Chem Commun (Camb) ; 60(53): 6728-6740, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38884278

ABSTRACT

Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.

14.
Pharmacotherapy ; 44(7): 549-557, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38884415

ABSTRACT

BACKGROUND: The CRC-VTE trial conducted in China revealed a significant occurrence of venous thromboembolism (VTE) in patients following colorectal cancer (CRC) surgery, raising concerns about implementing thromboprophylaxis measures. The present study aimed to identify and analyze inappropriate aspects of current thromboprophylaxis practices. METHODS: This study performed an analysis of the CRC-VTE trial, a prospective multicenter study that enrolled 1836 patients who underwent CRC surgery. The primary objective was to identify independent risk factors for VTE after CRC surgery using multivariate logistic regression analysis. Furthermore, among the cases in which VTE occurred, the appropriateness of thromboprophylaxis was assessed based on several factors, including pharmacologic prophylaxis, time to initiate prophylaxis, drug selection, drug dosage, and duration of pharmacologic prophylaxis. Based on the analysis of the current state of thromboprophylaxis and relevant clinical guidelines, a modified Delphi method was used to develop a clinical pathway for VTE prophylaxis after CRC surgery. RESULTS: In this analysis of 1836 patients, 205 (11.2%) were diagnosed with VTE during follow-up. The multifactorial analysis identified several independent risk factors for VTE, including age (≥70 years), female sex, varicose veins in the lower extremities, intraoperative blood transfusion, and the duration of immobilization exceeding 24 h. None of the patients diagnosed with VTE in the CRC trial received adequate thromboprophylaxis. The main reasons for this inappropriate practice were the omission of thromboprophylaxis, delayed initiation, and insufficient duration of thromboprophylaxis. We developed a specialized clinical pathway for thromboprophylaxis after CRC surgery to address these issues. CONCLUSIONS: This study offers a comprehensive nationwide evaluation of existing thromboprophylaxis practices in patients after CRC surgery in China. A specialized clinical pathway was developed to address the identified gaps and improve the quality of care. This clinical pathway incorporates explicit, tailored, detailed recommendations for thromboprophylaxis after CRC surgery.


Subject(s)
Colorectal Neoplasms , Venous Thromboembolism , Humans , Female , Male , Colorectal Neoplasms/surgery , Venous Thromboembolism/prevention & control , Venous Thromboembolism/etiology , China , Aged , Prospective Studies , Middle Aged , Risk Factors , Postoperative Complications/prevention & control , Postoperative Complications/epidemiology , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Critical Pathways , Practice Guidelines as Topic
15.
Carbohydr Polym ; 339: 122284, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823935

ABSTRACT

Interactions between human gut microbiota and dietary fibres (DF) are influenced by the complexity and diversity of both individual microbiota and sources of DF. Based on 480 in vitro fermentations, a full factorial experiment was performed with six faecal inocula representing two enterotypes and three DF sources with nanometer, micrometer, and millimeter length-scales (apple pectin, apple cell walls and apple particles) at two concentrations. Increasing DF size reduced substrate disappearance and fermentation rates but not biomass growth. Concentrated DF enhanced butyrate production and lactate cross-feeding. Enterotype differentiated final microbial compositions but not biomass or fermentation metabolite profiles. Individual donor microbiota differences did not influence DF type or concentration effects but were manifested in the promotion of different functional microbes within each population with the capacity to degrade the DF substrates. Overall, consistent effects (independent of donor microbiota variation) of DF type and concentration on kinetics of substrate degradation, microbial biomass production, gas kinetics and metabolite profiles were found, which can form the basis for informed design of DF for desired rates/sites and consequences of gut fermentation. These results add further evidence to the concept that, despite variations between individuals, the human gut microbiota represents a community with conserved emergent properties.


Subject(s)
Dietary Fiber , Feces , Fermentation , Gastrointestinal Microbiome , Pectins , Pectins/metabolism , Dietary Fiber/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Humans , Feces/microbiology , Malus/metabolism , Adult , Male , Female , Bacteria/metabolism , Bacteria/classification , Biomass
16.
J Environ Manage ; 365: 121570, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936030

ABSTRACT

The path toward sustainable development is closely related to the intensification of renewable energy sources and the continual innovation of technologies. To evaluate the role of renewable energy consumption and technological innovations on carbon emissions in Australia, this study uses the Morlet wavelet approach. This study identified temporal and frequency variations by applying wavelet correlation, continuous wavelet transforms, and partial and multiple wavelet coherence methods on data from 2000 to 2021. The wavelet correlation revealed that non-renewable energy, globalization, and economic growth are positively correlated with carbon emissions at all scales. In contrast, carbon emissions are negatively correlated with renewable energy and technological innovation at all scales. Meanwhile, the wavelet coherence analysis shows that non-renewable energy contributes to increased CO2 emissions from the short to long term, whereas renewable energy usage negatively affects CO2 emissions across all frequency scales. The study findings indicate that increasing the proportion of renewable energy usage in the total energy mix will curb CO2 emissions over the long run. Accordingly, the way to achieve sustainable development is shifting to a low-carbon economy centered on renewable energy sources, enhancing energy efficiency, and using carbon storage and capture technologies.

17.
J Hum Genet ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740982

ABSTRACT

F-box protein 11 (FBXO11) is a member of F-Box protein family, which has recently been proved to be associated with intellectual developmental disorder with dysmorphic facies and behavioral abnormalities (IDDFBA, OMIM: 618089). In this study, 12 intellectual disability individuals from 5 Chinese ID families were collected, and whole exome sequencing (WES), sanger sequencing, and RNA sequencing (RNA-seq) were conducted. Almost all the affected individuals presented with mild to severe intellectual disability (12/12), global developmental delay (10/12), speech and language development delay (8/12) associated with a range of alternate features including increased body weight (7/12), short stature (6/12), seizures (3/12), reduced visual acuity (4/12), hypotonia (1/12), and auditory hallucinations and hallucinations (1/12). Distinguishingly, malformation was not observed in all the affected individuals. WES analysis showed 5 novel FBXO11 variants, which include an inframe deletion variant, a missense variant, two frameshift variants, and a partial deletion of FBXO11 (exon 22-23). RNA-seq indicated that exon 22-23 deletion of FBXO11 results in a new mRNA structure. Conservation and protein structure prediction demonstrated deleterious effect of these variants. The DEGs analysis revealed 148 differentially expressed genes shared among 6 affected individuals, which were mainly associated with genes of muscle and immune system. Our research is the first report of FBXO11-associated IDDFBA in Chinese individuals, which expands the genetic and clinical spectrum of this newly identified NDD/ID syndrome.

18.
Adv Mater ; : e2404815, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719211

ABSTRACT

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

19.
Biochem Pharmacol ; 225: 116310, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788960

ABSTRACT

Targeting the DNA damage response (DDR) is a promising strategy in oncotherapy, as most tumor cells are sensitive to excess damage due to their repair defects. Ataxia telangiectasia mutated and RAD3-related protein (ATR) is a damage response signal transduction sensor, and its therapeutic potential in tumor cells needs to be precisely investigated. Herein, we identified a new axis that could be targeted by ATR inhibitors to decrease the DNA-dependent protein kinase catalytic subunit (DNAPKcs), downregulate the expression of the retinoblastoma (RB), and drive G1/S-phase transition. Four-way DNA Holliday junctions (FJs) assembled in this process could trigger S-phase arrest and induce lethal chromosome damage in RB-positive triple-negative breast cancer (TNBC) cells. Furthermore, these unrepaired junctions also exerted toxic effects to RB-deficient TNBC cells when the homologous recombination repair (HRR) was inhibited. This study proposes a precise strategy for treating TNBC by targeting the DDR and extends our understanding of ATR and HJ in tumor treatment.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA, Cruciform , Triple Negative Breast Neoplasms , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , DNA, Cruciform/metabolism , DNA, Cruciform/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Female , S Phase/drug effects , S Phase/physiology , Animals , Antineoplastic Agents/pharmacology , DNA Damage/physiology , DNA Damage/drug effects
20.
J Med Chem ; 67(11): 9406-9430, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38751194

ABSTRACT

Targeting NLRP3 inflammasome with inhibitors is a novel strategy for NLRP3-driven diseases. Herein, hit compound 5 possessing an attractive skeleton was identified from our in-house database of oridonin, and then a potential lead compound 32 was obtained by optimization of 5, displaying two-digit nanomolar inhibition on NLRP3. Moreover, compound 32 showed enhanced safety index (SI) relative to oridonin (IC50 = 77.2 vs 780.4 nM, SI = 40.5 vs 8.5) and functioned through blocking ASC oligomerization and interaction of NLRP3-ASC/NEK7, thereby suppressing NLRP3 inflammasome assembly and activation. Furthermore, diverse agonists-induced activations of NLRP3 could be impeded by compound 32 without altering NLRC4 or AIM2 inflammasome. Crucially, compound 32 possessed tolerable pharmaceutical properties and significant anti-inflammatory activity in MSU-induced gouty arthritis model. Therefore, this work enriched the SAR of NLRP3 inflammasome inhibitors and provided a potential candidate for the treatment of NLRP3-associated diseases.


Subject(s)
Anti-Inflammatory Agents , Diterpenes, Kaurane , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/therapeutic use , Diterpenes, Kaurane/chemical synthesis , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemical synthesis , Structure-Activity Relationship , Male , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Mice, Inbred C57BL , NIMA-Related Kinases/antagonists & inhibitors , NIMA-Related Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...