Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 7(3): 630-640, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481681

ABSTRACT

Melanocortin-4 receptor (MC4R) functions as a crucial neuroendocrine G protein-coupled receptor (GPCR) in the central nervous system of mammals, displaying agonist-independent constitutive activity that is mainly determined by its N-terminal domain. We previously reported that zebrafish MC4R exhibited a much higher basal cAMP level in comparison to mammalian MC4Rs. However, the functional evolution of constitutive activities in chordate MC4Rs remains to be elucidated. Here we cloned and compared the constitutive activities of MC4Rs from nine vertebrate species and showed that the additive action of the N-terminus with the extracellular region or transmembrane domain exhibited a combined pharmacological effect on the MC4R constitutive activity. In addition, we demonstrated that four residues of F149, Q156, V163, and K164 of the second intracellular loop played a vital role in determining MC4R constitutive activity. This study provided novel insights into functional evolution and identified a key motif essential for constitutive modulation of MC4R signaling.

2.
Environ Microbiol ; 25(5): 977-989, 2023 05.
Article in English | MEDLINE | ID: mdl-36604972

ABSTRACT

The colicin I receptor (CirA) is a well-studied outer membrane protein that has been reported to play important roles in antibiotic resistance, virulence, and iron homeostasis, although its exact physiological roles require further investigation. In this study, differentially expressed proteins between the ΔahcirA and wild-type (WT) strains of Aeromonas hydrophila were compared using quantitative proteomics. Bioinformatics analysis revealed that the expression of peptide, histidine, and arginine ATP-binding cassette (ABC) transporter system-related proteins was significantly higher in the ΔahcirA strain. Subsequent growth assays revealed that ΔahcirA grew slower than the WT strain in nutrient-limited medium when supplemented with dipeptide, histidine, and arginine as the carbon source. Far-western blot analysis further confirmed that AhCirA can directly bind to histidine/arginine and dipeptide small-molecule substrates in addition to their periplasmic-binding proteins, AhDppA and AhHisJ, respectively. These results indicate that AhCirA may play an important role in the uptake of amino acids and peptides as a channel-forming porin while also directly interacting with ABC transporters to transport nutrient substances into the plasma membrane. Overall, this study demonstrates that AhCirA is a multifunctional protein in A. hydrophila and extends our understanding of known nutrient transport mechanisms among bacteria.


Subject(s)
Bacterial Proteins , Colicins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Colicins/metabolism , Aeromonas hydrophila/genetics , Aeromonas hydrophila/metabolism , Proteomics/methods , Histidine/metabolism , Nutrients , Arginine/metabolism
3.
Front Endocrinol (Lausanne) ; 13: 892407, 2022.
Article in English | MEDLINE | ID: mdl-35795143

ABSTRACT

The melanocortin system consists of five G protein-coupled receptors (MC1R-MC5R), the bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins (MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the essential roles in the skin and fur pigmentation, morphological background adaptation, and stress response. The diploid amphibian Xenopus tropicalis (xt) has been utilized as a fantastic animal model for embryonic development and studies of physiological cryptic colouring and environmental adaptiveness. However, the interaction of xtMc1r signaling with xtMrap proteins has not been assessed yet. In this study, we carried out in silico evolutionary analysis of protein alignment and genetic phylogenetic and genomic synteny of mc1r among various vertebrates. Ubiquitous expression of mrap1 and mrap2 and the co-expression with mc1r transcripts in the skin were clearly observed. Co-immunoprecipitation (ip) and fluorescent complementary approach validated the direct functional interaction of xtMc1r with xtMrap1 or xtMrap2 proteins on the plasma membrane. Pharmacological assay showed the improvement of the constitutive activity and alpha melanocyte-stimulating hormone (α-MSH) stimulated plateau without dramatic alteration of the cell surface translocation of xtMc1r in the presence of xtMrap proteins. Overall, the pharmacological modulation of xtMc1r by dual xtMrap2 proteins elucidated the potential role of this protein complex in the regulation of proper dermal function in amphibian species.


Subject(s)
Receptor, Melanocortin, Type 1 , Signal Transduction , Animals , Cell Membrane , Female , Phylogeny , Xenopus
4.
J Proteomics ; 264: 104621, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35618212

ABSTRACT

Aeromonas hydrophila is a widespread opportunistic pathogen of aquatic fishes in freshwater habitats. The current emergence of antimicrobial-resistant A. hydrophila has been reported in the world while the bacterial antibiotics adaptive mechanism remains poorly explored. In this study, using quantitative proteomics technology, the behavior of A. hydrophila was investigated by comparing the differentially expression proteins between with and without kanamycin (KAN) treatment. A total of 374 altered proteins including 184 increasing and 190 proteins decreasing abundances were quantified when responding to KAN stress. The bioinformatics analysis showed that stress related proteins were hub proteins that significantly increased to reduce the pressure from the misreading of mRNA caused by KAN. Moreover, several metallic pathways, such as oxidative phosphorylation and TCA cycle pathways may affect KAN resistance. Finally, eight selected genes were deleted and their antibiotics susceptibilities to kanamycin were valued, respectively. Results showed that OmpA II family protein A0KI26, and two-component system protein AtoC may involve in the KAN resistance in this study. In general, our results provide an insight into the behaviors of bacterial responding to KAN stress, and demonstrate the intrinsic antibiotics adaptive mechanism of A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, the differentially expressed proteins (DEPs) of A. hydrophila strain between with and without kanamycin (KAN) were compared by using a data-independent acquisition (DIA) - based quantitative proteomics method. Bioinformatics analysis showed that stress - related proteins are hub proteins that significantly increased under KAN stress. Moreover, several metallic pathways, such as oxidative phosphorylation and citrate cycle (TCA cycle) pathways, can affect KAN resistance. Finally, our antibiotics susceptibility assay showed that the protein A0KI26 of the OmpA II family, and the AtoC of the two-component system may involve in KAN resistance in this study. These results provide insights into the antibiotics adaptation mechanism of A. hydrophila when responding to KAN stress.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Aeromonas hydrophila/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Humans , Kanamycin/pharmacology , Proteomics/methods
5.
Mol Cell Proteomics ; 21(9): 100248, 2022 09.
Article in English | MEDLINE | ID: mdl-35605723

ABSTRACT

Protein lysine acetylation (Kac) modification plays important roles in diverse physiological functions. However, there is little evidence on the role of Kac modification in bacterial antibiotic resistance. Here, we compared the differential expressions of whole-cell proteins and Kac peptides in oxytetracycline sensitive and oxytetracycline resistance (OXYR) strains of Aeromonas hydrophila using quantitative proteomics technologies. We observed a porin family protein Aha1 downregulated in the OXYR strain, which may have an important role in the OXY resistance. Interestingly, seven of eight Kac peptides of Aha1 decreased abundance in OXYR as well. Microbiologic assays showed that the K57R, K187R, and K197R Aha1 mutants significantly increased antibiotic resistance to OXY and reduced the intracellular OXY accumulation in OXY stress. Moreover, these Aha1 mutants displayed multidrug resistance features to tetracyclines and ß-lactam antibiotics. The 3D model prediction showed that the Kac states of K57, K187, and K197 sites located at the extracellular pore vestibule of Aha1 may be involved in the uptake of specific types of antibiotics. Overall, our results indicate a novel antibiotic resistance mechanism mediated by Kac modification, which may provide a clue for the development of antibiotic therapy strategies.


Subject(s)
Aeromonas hydrophila , Oxytetracycline , Acetylation , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Lysine/metabolism , Oxytetracycline/metabolism , Porins/metabolism , beta-Lactams/pharmacology
6.
J Lipid Res ; 59(2): 330-338, 2018 02.
Article in English | MEDLINE | ID: mdl-29229738

ABSTRACT

Disregulation of fatty acid oxidation, one of the major mechanisms for maintaining hepatic lipid homeostasis under fasting conditions, leads to hepatic steatosis. Although obesity and type 2 diabetes-induced endoplasmic reticulum (ER) stress contribute to hepatic steatosis, it is largely unknown how ER stress regulates fatty acid oxidation. Here we show that fasting glucagon stimulates the dephosphorylation and nuclear translocation of histone deacetylase 5 (HDAC5), where it interacts with PPARα and promotes transcriptional activity of PPARα. As a result, overexpression of HDAC5 but not PPARα binding-deficient HDAC5 in liver improves lipid homeostasis, whereas RNAi-mediated knockdown of HDAC5 deteriorates hepatic steatosis. ER stress inhibits fatty acid oxidation gene expression via calcium/calmodulin-dependent protein kinase II-mediated phosphorylation of HDAC5. Most important, hepatic overexpression of a phosphorylation-deficient mutant HDAC5 2SA promotes hepatic fatty acid oxidation gene expression and protects against hepatic steatosis in mice fed a high-fat diet. We have identified HDAC5 as a novel mediator of hepatic fatty acid oxidation by fasting and ER stress signals, and strategies to promote HDAC5 dephosphorylation could serve as new tools for the treatment of obesity-associated hepatic steatosis.


Subject(s)
Endoplasmic Reticulum Stress , Fasting/metabolism , Fatty Acids/metabolism , Histone Deacetylases/metabolism , Liver/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...