Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37376537

ABSTRACT

Pseudorabies virus (PRV) variants have caused substantial economic losses in the swine industry in China since 2011. To surveil the genetic variation in PRV field strains, here, two novel variant strains of PRV were isolated from Shanxi Province in central China and were designated SX1910 and SX1911. To identify the genetic characteristics of the two isolates, their complete genomes were sequenced, and phylogenetic analysis and sequence alignment revealed that field PRV variants have undergone genetic variations; notably, the protein-coding sequences UL5, UL36, US1 and IE180 exhibited extensive variation and contained one or more hypervariable regions. Furthermore, we also found that the glycoproteins gB and gD of the two isolates had some novel amino acid (aa) mutations. Importantly, most of these mutations were located on the surface of the protein molecule, according to protein structure model analysis. We constructed a mutant virus of SX1911 with deletion of the gE and gI genes via CRISPR/Cas9. When tested in mice, SX1911-ΔgE/gI-vaccinated mice were protected within a comparable range to Bartha-K61-vaccinated mice. Additionally, a higher dose of inactivated Bartha-K61 protected the mice from lethal SX1911 challenge, while a lower neutralization titer, higher viral load and more severe microscopic lesions were displayed in Bartha-K61-vaccinated mice. These findings highlight the need for continuous monitoring of PRV and novel vaccine development or vaccination program design for PRV control in China.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Swine , Animals , Mice , Pseudorabies/prevention & control , Phylogeny , Genomics , China
2.
Leuk Lymphoma ; 59(3): 650-659, 2018 03.
Article in English | MEDLINE | ID: mdl-28679299

ABSTRACT

Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.


Subject(s)
Apoptosis/drug effects , Arsenic Trioxide/pharmacology , Cell Proliferation/drug effects , Leukemia, Promyelocytic, Acute/immunology , T-Lymphocytes, Regulatory/immunology , Antineoplastic Agents/pharmacology , Case-Control Studies , Follow-Up Studies , Humans , Leukemia, Promyelocytic, Acute/blood , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Prognosis , T-Lymphocytes, Regulatory/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...