Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Med ; 28(5): 974-981, 2022 05.
Article in English | MEDLINE | ID: mdl-35551292

ABSTRACT

Metformin, the first-line therapy for type 2 diabetes (T2D), decreases hepatic glucose production and reduces fasting plasma glucose levels. Dorzagliatin, a dual-acting orally bioavailable glucokinase activator targeting both the pancreas and liver glucokinase, decreases postprandial glucose in patients with T2D. In this randomized, double-blind, placebo-controlled phase 3 trial, the efficacy and safety of dorzagliatin as an add-on therapy to metformin were assessed in patients with T2D who had inadequate glycemic control using metformin alone. Eligible patients with T2D (n = 767) were randomly assigned to receive dorzagliatin or placebo (1:1 ratio) as an add-on to metformin (1,500 mg per day) for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin (HbA1c) levels from baseline to week 24, and safety was assessed throughout the trial. At week 24, the least-squares mean change from baseline in HbA1c (95% confidence interval (CI)) was -1.02% (-1.11, -0.93) in the dorzagliatin group and -0.36% (-0.45, -0.26) in the placebo group (estimated treatment difference, -0.66%; 95% CI: -0.79, -0.53; P < 0.0001). The incidence of adverse events was similar between groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin and metformin combined therapy group. In patients with T2D who experienced inadequate glycemic control with metformin alone, dorzagliatin resulted in effective glycemic control with good tolerability and safety profile ( NCT03141073 ).


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Blood Glucose , Double-Blind Method , Drug Therapy, Combination , Glucokinase , Glycated Hemoglobin/analysis , Glycated Hemoglobin/therapeutic use , Humans , Hypoglycemic Agents/adverse effects , Pyrazoles , Treatment Outcome
3.
Diabetologia ; 64(5): 1066-1078, 2021 05.
Article in English | MEDLINE | ID: mdl-33687487

ABSTRACT

AIMS/HYPOTHESIS: Glucagon-like peptide 1 receptor agonists (GLP-1 RA) such as exenatide are used as monotherapy and add-on therapy for maintaining glycaemic control in patients with type 2 diabetes mellitus. The current study investigated the safety and efficacy of once-weekly PB-119, a PEGylated exenatide injection, in treatment-naive patients with type 2 diabetes. METHODS: In this Phase II, randomised, placebo-controlled, double-blind study, we randomly assigned treatment-naive Chinese patients with type 2 diabetes in a 1:1:1:1 ratio to receive subcutaneous placebo or one of three subcutaneous doses of PB-119 (75, 150, and 200 µg) for 12 weeks. The primary endpoint was the change in HbA1c from baseline to week 12, and other endpoints were fasting plasma glucose, 2 h postprandial glucose (PPG), and proportion of patients with HbA1c < 53 mmol/mol (<7.0%) and ≤48 mmol/mol (≤6.5%) at 2, 4, 8 and 12 weeks of treatment. Safety was assessed in all patients who received at least one dose of study drug. RESULTS: We randomly assigned 251 patients to one of the four treatment groups (n = 62 in placebo and 63 each in PB-119 75 µg, 150 µg and 200 µg groups). At the end of 12 weeks, mean differences in HbA1c in the treatment groups were -7.76 mmol/mol (95% CI -9.23, -4.63, p < 0.001) (-0.72%, 95% CI -1.01, -0.43), -12.89 mmol/mol (95% CI -16.05, -9.72, p < 0.001) (-1.18%, 95% CI -1.47, -0.89) and -11.14 mmol/mol (95% CI -14.19, -7.97, p <0 .001) (-1.02%, 95% CI -1.30, -0.73) in the 75 µg, 150 µg and 200 µg PB-119 groups, respectively, compared with that in the placebo group after adjusting for baseline HbA1c. Similar results were also observed for other efficacy endpoints across different time points. There was no incidence of treatment-emergent serious adverse event, severe hypoglycaemia or death. CONCLUSIONS/INTERPRETATION: All tested PB-119 doses had superior efficacy compared with placebo and were safe and well tolerated over 12 weeks in treatment-naive Chinese patients with type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT03520972 FUNDING: The study was funded by National Major Scientific and Technological Special Project for Significant New Drugs Development and PegBio.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Exenatide/therapeutic use , Adolescent , Adult , Aged , Blood Glucose/drug effects , Blood Glucose/metabolism , China/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Double-Blind Method , Exenatide/chemistry , Female , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Polyethylene Glycols/chemistry , Treatment Outcome , Young Adult
4.
Endocrine ; 66(3): 485-493, 2019 12.
Article in English | MEDLINE | ID: mdl-31410749

ABSTRACT

PURPOSE: Accumulated evidence has indicated that the gut microbiome affected the pharmacology of anti-diabetic agents, and their metabolic products induced by the agents transformed the structure of gastrointestinal microbiota in return. However, the studies around heredity, ethnicity, or living condition, referring to human microbiome were mostly represented by an occidental pattern partial and rare studies that focused on the effect of several first-line hypoglycemic agents on the gut flora in a single medical center. Therefore, we aimed to explore the interaction between gut microbiome and type 2 diabetes (T2D) or hypoglycemics in Chinese population. METHODS: A total of 130 T2D patients with a specific hypoglycemic treatment and 50 healthy volunteers were enrolled in this study. Gut microbiome compositons were analyzed by 16S ribosomal RNA gene-based sequencing protocol. RESULTS: Hypoglycemic agents contributed to the alteration of specific species in gut bacteria rather than its total diversity. Metformin increased the abundance of Spirochaete, Turicibacter, and Fusobacterium. Insulin also increased Fusobacterium, and α-glucosidase inhibitors (α-GIs) contributed to the plentitude of Bifidobacterium and Lactobacillus. Both metformin and insulin improved taurine and hypotaurine metabolism, and α-GI promoted several amino acid pathways. Although the community of gut microbiota with metformin and insulin showed similarity, significant differences were available in each diabetic group with hypoglycemia. CONCLUSIONS: Gut microbiota is significantly associated with anti-diabetic agents. The gut microbiome and metabolism have shown respective characteristics in different T2D groups, which were also significantly different from the healthy group. This study provides some new insights for identification and exploration of the pathogenesis of T2D.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Hypoglycemic Agents/pharmacology , Aged , Case-Control Studies , Diabetes Mellitus, Type 2/microbiology , Female , Humans , Hyperglycemia/microbiology , Hypoglycemic Agents/therapeutic use , Male , Middle Aged
5.
Endocrine ; 64(3): 564-574, 2019 06.
Article in English | MEDLINE | ID: mdl-30584647

ABSTRACT

PURPOSE: Thyroid cancer and thyroid nodules are the most prevalent form of thyroid endocrine disorder. The balance of gut microbiome is highly crucial for a healthy human body, especially for the immune and endocrine system. However, the relationship between gut microbiome and the thyroid endocrine disorders such as thyroid cancer and thyroid nodules has not been reported yet. METHODS: A cohort of 74 patients was recruited for this study. Among them, 20 patients had thyroid cancer, 18 patients had thyroid nodules, and 36 were matched healthy controls. Gut microbiome composition was analyzed by 16S rRNA (16S ribosomal RNA) gene-based sequencing protocol. RESULTS: We compared the gut microbiome results of 74 subjects and established the correlation between gut microbiome and thyroid endocrine function for both thyroid cancer and thyroid nodules. The results inferred that alpha and beta diversity were different for patients with thyroid tumor than the healthy controls (p < 0.01). In comparison to healthy controls, the relative abundance of Neisseria (p < 0.001) and Streptococcus (p < 0.001) was significantly higher for thyroid cancer and thyroid nodules. Butyricimonas (p < 0.001) and Lactobacillus (p < 0.001) displayed notably lower relative abundance for thyroid cancer and thyroid nodules, respectively. It was also found that the clinical indexes were correlated with gut microbiome. CONCLUSION: Our results indicate that both thyroid cancer and thyroid nodules are associated with the composition of gut microbiome. These results may support further clinical diagnosis to a great extent and help in developing potential probiotics to facilitate the treatment of thyroid cancer and thyroid nodules.


Subject(s)
Dysbiosis/pathology , Gastrointestinal Microbiome , Thyroid Gland/pathology , Thyroid Neoplasms/pathology , Thyroid Nodule/pathology , Adult , Female , Humans , Male , Middle Aged , Thyroid Function Tests , Thyroid Gland/physiopathology , Thyroid Neoplasms/microbiology , Thyroid Neoplasms/physiopathology , Thyroid Nodule/microbiology , Thyroid Nodule/physiopathology
6.
World J Gastroenterol ; 21(2): 511-6, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25593466

ABSTRACT

AIM: To investigate the associations between miRNA-103 (miR-103) and insulin resistance and nonalcoholic fatty liver disease (NAFLD). METHODS: Serum samples were collected from 50 NAFLD patients who were overweight or obese (NAFLD group) and from 30 healthy subjects who served as controls (normal control group). Quantitative polymerase chain reaction was used to detect expression of miR-103. Fasting plasma glucose, fasting insulin, and triglyceride (TG) levels were measured. Homeostasis model assessment was used to evaluate basal insulin resistance (HOMA-IR). Patient height and weight were measured to calculate body mass index (BMI). RESULTS: Compared with the normal control group, higher serum levels of miR-103 were expressed in the NAFLD group (8.18 ± 0.73 vs 4.23 ± 0.81, P = 0.000). When P = 0.01 (bilateral), miR-103 was positively correlated with HOMA-IR (r = 0.881), TG (r = 0.774) and BMI (r = 0.878), respectively. miR-103, TG and BMI were all independent factors for HOMA-IR (ß = 0.438/0.657/0.251, P = 0.000/0.007/0.001). miR-103, TG, BMI and HOMA-IR were all risk factors for NAFLD (odds ratio = 2.411/16.196/1.574/19.11, P = 0.009/0.022/0.01/0.014). CONCLUSION: miR-103 is involved in insulin resistance and NAFLD, and may be a molecular link between insulin resistance and NAFLD and a therapeutic target for these disorders.


Subject(s)
Insulin Resistance/genetics , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/genetics , Adult , Biomarkers/blood , Blood Glucose/metabolism , Body Mass Index , Case-Control Studies , Fasting/blood , Female , Humans , Insulin/blood , Linear Models , Male , MicroRNAs/blood , Middle Aged , Multivariate Analysis , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Odds Ratio , Risk Factors , Triglycerides/blood , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...