Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Leg Med (Tokyo) ; 65: 102312, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37603982

ABSTRACT

More accurate identification of the types of body fluids left at a crime scene is indispensable for improving the judicial chain of evidence. MicroRNAs (miRNAs) have become recognized as ideal molecular markers for the identification of body fluids in forensic science due to their short length, stability and high tissue specificity. In this study, small RNA sequencing was performed on 20 samples of five types of body fluids (peripheral blood, menstrual blood, saliva, semen, and vaginal secretions) with the BGISEQ-500 sequencing platform, and the specific miRNA markers of saliva and vaginal secretions were screened by bioinformatics methods, including differential expression analysis and significant enrichment analysis. Through RT-qPCR validation of 169 samples, we confirmed that miR-223-3p can be used as a saliva-specific marker. In addition, we considered miR-223-3p in combination with four other miRNA molecules (miR-451a, miR-891a-5p, miR-144-5p, miR-203a-3p) that had been previously screened and verified in our laboratory, and seven body fluid prediction models based on machine learning algorithms were constructed and verified. The results showed that a kernel density estimation (KDE) model based on the five miRNA markers for body fluid identification could achieve 100% accuracy in the samples tested in the present study.


Subject(s)
Body Fluids , MicroRNAs , Female , Humans , Saliva , Forensic Genetics/methods , MicroRNAs/analysis , Body Fluids/chemistry , Biomarkers/metabolism
2.
Exp Ther Med ; 25(5): 233, 2023 May.
Article in English | MEDLINE | ID: mdl-37114171

ABSTRACT

Chronic fragmented sleep is a very common type of insomnia that affects the daily lives of numerous people around the world. However, its pathogenesis is not very clear and a corresponding rat model has not been reported for this purpose at present. The present study aimed to establish a rat model of chronic insomnia with sleep fragmentation using self-made multiple strings of unstable platforms surrounded by shallow water. During the establishment of the models, changes in body weight and differences in food and water intake in the daytime and at night were acquired. The rat models were assessed using several tests, including the Morris water maze test, pentobarbital sodium-induced sleep, infrared monitoring and electroencephalogram/electromyography during sleep. The expression levels of certain inflammatory factors and orexin A were detected in the serum and brain tissues using ELISAs, immunohistochemistry and immunofluorescence. The expression levels of orexin 1 receptor (orexin 1r) were also detected in the brain. Polysomnography indicated that the model rats were successfully prepared with reduced non-rapid eye movement (non-REM) sleep in the daytime, which was increased at night, and considerably lower REM duration during the day and night. The number of instances of sleep arousals were also increased in the day and at night, and the average duration of each sleep bout was decreased in the daytime. The body weights of the model rats increased at a normal rate. However, the reduction of body weight in the daytime and increased in body weight at night were significantly less than those of the control rats. The daytime food and water consumption of the model rats increased significantly compared with that of the control rats, but was similar to that of the control group at night. The Morris water maze test indicated that the model rats were slow to learn to escape the platforms and performed a lower number of target crossings. The pentobarbital-induced sleep experiment confirmed that the model rats exhibited a longer sleep latency and shorter sleep time. The serum IL-1ß, IL-6, TNF-α and orexin A levels of the model rats were significantly increased, whereas their serum IL-10 levels were significantly decreased compared with those of the control rats. The expression levels of IL-1ß, IL-6, orexin A and orexin 1r in the brain tissues of the model rats were also significantly increased. In conclusion, these data indicate that learning and memory function, sleep time, arousal times, diurnal and nocturnal body weight changes, food and water intake, and expression levels of the specific inflammatory factors orexin A and orexin 1r were altered in the model rats. This suggests the chronic insomnia rat model with sleep fragmentation was successfully established using multiple strings of unstable platforms surrounded by water.

3.
Forensic Sci Int Genet ; 63: 102827, 2023 03.
Article in English | MEDLINE | ID: mdl-36642061

ABSTRACT

MicroRNA (miRNA)-based methods for body fluid identification are promising tools in the practice of forensic science. The selection of appropriate endogenous reference genes as normalizers for the relative quantification of miRNA expression levels using quantitative reverse transcription-polymerase chain reaction (RTqPCR) is essential to avoid errors and improve the comparability of miRNA expression level data among different body fluids. In this study, small RNAs were isolated from individual donations of five forensically relevant body fluids (peripheral blood, menstrual blood, saliva, semen and vaginal secretions). Thirty-seven samples were subjected to high-throughput miRNA sequencing. By combining our results with those obtained through a literature investigation, 28 candidate RNAs were identified. Following RTqPCR validation, the candidate RNAs were preliminarily evaluated in 15 samples to exclude miRNAs with low expression and high variation. Then, the expression levels of 10 relatively stable candidate reference RNAs in 100 samples were determined and further analysed using four commonly employed programs (geNorm, NormFinder, BestKeeper and ΔCq). According to the comprehensive stability rankings of the four algorithms, miR-320a-3p was validated as the most stable endogenous reference gene among the five forensically relevant body fluids, followed by miR-484, SNORD43, miR-320c and RNU6b. Moreover, the combined application of miR-320a-3p with RNU6b could increase the normalization effect. In addition, a total of 56 mock samples placed outdoors and indoors for different times were prepared to further evaluate the stability of candidate reference RNAs, and miR-320a-3p remained the preferred reference gene. Furthermore, the relative expression levels of publicly accepted body fluid-specific miRNAs were determined in 30 samples to verify the practicality and effectiveness of the reference genes. Our results revealed a set of alternative reference genes and could promote the development and application of miRNA-based body fluid identification by determining optional reference genes for strict normalization.


Subject(s)
Body Fluids , MicroRNAs , Female , Humans , MicroRNAs/metabolism , Body Fluids/chemistry , Saliva/chemistry , Semen/chemistry , Forensic Medicine , Real-Time Polymerase Chain Reaction , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL