Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 225: 114170, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830388

ABSTRACT

Eleven alkaloids including four previously undescribed oxoisoaporphine alkaloids, menisoxoisoaporphines A-D (1-4), four known analogues (5-8), and three aporphine alkaloids (9-11), were isolated and identified from the rhizomes of Menispermum dauricum. Their structures were elucidated by extensive spectroscopic data and single-crystal X-ray diffraction analyses. Among them, compounds 1 and 4 were the first samples of oxoisoaporphine with C-6 isopentylamino moiety, and 2 was a rare C-4 methylation product of oxoisoaporphine alkaloid. The in vitro anti-inflammatory activity of compounds 1-11 was performed by evaluating the inhibition of NO level in LPS-induced RAW264.7 macrophages. Among them, compound 4 exhibited the most potent NO inhibition activity with an IC50 value of 1.95 ± 0.33 µM. The key structure-activity relationships of those oxoisoaporphine alkaloids for anti-inflammatory effects have been summarized.

2.
Math Biosci Eng ; 18(2): 1352-1369, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33757189

ABSTRACT

In this paper, we study a nonautonomous stochastic SIS epidemic model with Le´vy jumps. We first establish that this model has a unique global positive solution with the positive initial condition. Then, we investigate the condition for extinction of the disease. Moreover, by constructing suitable stochastic Lyapunov function, sufficient conditions for persistence and existence of Nontrivial T-periodic solution of system are obtained. Finally, numerical simulations are also presented to illustrate the main results.


Subject(s)
Epidemics , Models, Biological , Computer Simulation , Stochastic Processes
3.
Fish Shellfish Immunol ; 36(1): 172-80, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24239582

ABSTRACT

Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with binding and neutralizing activities to lipopolysaccharide (LPS) in crustaceans. This study identified and characterized a novel ALF homolog (SpALF4) from the mud crab Scylla paramamosain. The complete cDNA of SpALF4 had 756 bp with a 381 bp open reading frame encoding a protein with 126 aa. The deduced protein contained a signal peptide and a LPS-binding domain. SpALF4 shared the highest identity with PtALF5 at amino acid level but exhibited low similarity with most of other crustacean ALFs. Furthermore, different from the previously identified three SpALF homologs and most of other ALFs, SpALF4 had a low isoelectric point (pI) for the mature peptide and the LPS-binding domain with the values of 6.93 and 6.74, respectively. These results indicate that SpALF4 may be a unique ALF homolog with special biological function in the mud crab. Similar to the spatial structure of ALFPm3, SpALF4 contains three α-helices packed against a four-strand ß-sheet, and an amphipathic loop formed by a disulphide bond between two conserved cysteine residues in LPS-binding domain. SpALF4, mainly distributed in hemocytes, could be upregulated by Vibrio harveyi, Staphylococcus aureus, or white spot syndrome virus. Recombinant SpALF4 could inhibit the growth of Gram-negative bacteria (V. harveyi, Vibrio anguillarum, Vibrio alginolyticus, Aeromonas hydrophila, Pseudomonas putida), Gram-positive bacteria (S. aureus and Bacillus megaterium), and a fungus Candida albicans to varying degrees. Further study showed that it could also bind to all the aforementioned microorganisms except S. aureus. These results demonstrate that SpALF4 is a unique ALF homolog with potent antimicrobial activity against bacteria and fungi. This characteristic suggests SpALF4 plays an essential function in immune defense against pathogen invasion in mud crab.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Brachyura/immunology , Gram-Negative Bacteria/immunology , Gram-Positive Bacteria/immunology , Phylogeny , Staphylococcus aureus/immunology , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Base Sequence , Brachyura/genetics , Cloning, Molecular , Hydrophobic and Hydrophilic Interactions , Isoelectric Point , Microbial Sensitivity Tests , Models, Molecular , Molecular Sequence Data , RNA/chemistry , RNA/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA
4.
PLoS One ; 8(10): e76728, 2013.
Article in English | MEDLINE | ID: mdl-24116143

ABSTRACT

Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria.


Subject(s)
Arthropod Proteins/genetics , Brachyura/genetics , Hemolymph/metabolism , Protein Serine-Threonine Kinases/genetics , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/classification , Arthropod Proteins/metabolism , Base Sequence , Brachyura/microbiology , Brachyura/virology , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Electrophoresis, Polyacrylamide Gel , Hemolymph/microbiology , Hemolymph/virology , Host-Pathogen Interactions , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Staphylococcus aureus/physiology , Transcriptome , Vibrio/physiology , White spot syndrome virus 1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...