Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Cancer Lett ; 593: 216956, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735381

ABSTRACT

Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.

2.
Ecotoxicol Environ Saf ; 278: 116435, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714084

ABSTRACT

The compound known as Sodium arsenite (NaAsO2), which is a prevalent type of inorganic arsenic found in the environment, has been strongly associated with liver fibrosis (LF), a key characteristic of nonalcoholic fatty liver disease (NAFLD), which has been demonstrated in our previous study. Our previous research has shown that exposure to NaAsO2 triggers the activation of hepatic stellate cells (HSCs), a crucial event in the development of LF. However, the molecular mechanism is still unknown. N6-methyladenosine (m6A) modification is the most crucial post-transcriptional modification in liver disease. Nevertheless, the precise function of m6A alteration in triggering HSCs and initiating LF caused by NaAsO2 remains unknown. Here, we found that NaAsO2 induced LF and HSCs activation through TGF-ß/Smad signaling, which could be reversed by TGF-ß1 knockdown. Furthermore, NaAsO2 treatment enhanced the m6A modification level both in vivo and in vitro. Significantly, NaAsO2 promoted the specific interaction of METTL14 and IGF2BP2 with TGF-ß1 and enhanced the TGF-ß1 mRNA stability. Notably, NaAsO2-induced TGF-ß/Smad pathway and HSC-t6 cells activation might be avoided by limiting METTL14/IGF2BP2-mediated m6A modification. Our findings showed that the NaAsO2-induced activation of HSCs and LF is made possible by the METTL14/IGF2BP2-mediated m6A methylation of TGF-ß1, which may open up new therapeutic options for LF brought on by environmental hazards.


Subject(s)
Adenosine , Arsenites , Hepatic Stellate Cells , Liver Cirrhosis , Sodium Compounds , Transforming Growth Factor beta1 , Arsenites/toxicity , Hepatic Stellate Cells/drug effects , Sodium Compounds/toxicity , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Animals , Transforming Growth Factor beta1/metabolism , Adenosine/analogs & derivatives , Methyltransferases/genetics , Methyltransferases/metabolism , Male , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/drug effects , Mice , Humans , Mice, Inbred C57BL
3.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Article in English | MEDLINE | ID: mdl-38626609

ABSTRACT

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Subject(s)
Alkanesulfonic Acids , Autophagy , Calcium , Fluorocarbons , Insulin Resistance , Liver , Lysosomes , Mitochondria , Mitochondrial Proton-Translocating ATPases , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Animals , Lysosomes/drug effects , Lysosomes/metabolism , Autophagy/drug effects , Calcium/metabolism , Mice , Mitochondrial Proton-Translocating ATPases/metabolism , Liver/drug effects , Liver/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Male , Voltage-Dependent Anion Channel 1/metabolism , Cell Line , Hepatocytes/drug effects , Hepatocytes/metabolism , Environmental Pollutants/toxicity , TRPM Cation Channels/metabolism , Mice, Inbred C57BL
4.
Int Immunopharmacol ; 132: 112046, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593508

ABSTRACT

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.


Subject(s)
Anti-Inflammatory Agents , Aspergillosis , Aspergillus fumigatus , Isoflavones , Keratitis , Animals , Aspergillus fumigatus/drug effects , Keratitis/drug therapy , Keratitis/microbiology , Keratitis/immunology , Aspergillosis/drug therapy , Aspergillosis/immunology , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Mice , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Neutrophils/immunology , Neutrophils/drug effects , Disease Models, Animal , Reactive Oxygen Species/metabolism , Female , Macrophages/drug effects , Macrophages/immunology , Biofilms/drug effects , Mice, Inbred C57BL , Cornea/pathology , Cornea/drug effects , Cornea/microbiology
5.
Cancer Lett ; 586: 216612, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211653

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is featured by notorious EGFR tyrosine kinase inhibitor (TKI) resistance attributable to activation of parallel pathways. The numerous phase I/II trials have rarely shown encouraging clinical outcomes of EGFR-TKIs during treatment in HNSCC patients with advanced tumors. A unique IL-6/STAT3 signaling axis is reported to regulate multiple cancer-related pathways, but whether this signaling is correlated with reduced EGFR-TKI responsiveness is unclear. Here, we found that STAT3 signaling is compensatorily upregulated after EGFR-TKI exposure and confers anti-EGFR therapy resistance during HNSCC therapy. Targeting STAT3 using small molecule inhibitors promotes complete recovery or sustained elimination of HNSCC tumors through combination with EGFR-TKIs both in vitro and in diverse animal models. Mechanistically, phosphorylated STAT3 was proven to enhance oncogenic autophagic flux, protecting cancer cells and preventing EGFR-TKI-induced tumor apoptosis. Thus, blockade of STAT3 signaling simultaneously disrupts several key interactions during tumor progression and remodels the autophagic degradation system, thereby rendering advanced HNSCC eradicable through combination with EGFR-TKI therapy. These findings provide a clinically actionable strategy and suggest STAT3 as a predictive biomarker with therapeutic potential for EGFR-TKI resistant HNSCC patients.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Animals , Humans , Autophagy , Beclin-1/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Head and Neck Neoplasms/drug therapy , Interleukin-6/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Squamous Cell Carcinoma of Head and Neck/drug therapy , STAT3 Transcription Factor/metabolism
6.
J Biochem Mol Toxicol ; 38(1): e23610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091339

ABSTRACT

Although epidemiological studies have evaluated the association between ambient air pollution and chronic kidney disease (CKD), the results remain mixed. To clarify the nature of the association, we conducted a comprehensive systematic review and meta-analysis to assess the global relationship between air pollution and CKD. The Web of Science, PubMed, Embase and Cochrane Library databases systematically were searched for studies published up to July 2023 and included 32 studies that met specific criteria. The random effects model was used to derive overall risk estimates for each pollutant. The meta-analysis estimated odds ratio (ORs) of risk for CKD were 1.42 (95% confidence interval [CI]: 1.31-1.54) for each 10 µg/m3 increase in PM2.5 ; 1.20 (95% CI: 1.14-1.26) for each 10 µg/m3 increase in PM10 ; 1.07 (95% CI: 1.05-1.09) for each 10 µg/m3 increase in NO2 ; 1.03 (95% CI: 1.02-1.03) for each 10 µg/m3 increase in NOX ; 1.07 (95% CI: 1.01-1.12) for each 1 ppb increase in SO2 ; 1.03 (95% CI: 1.00-1.05) for each 0.1 ppm increase in CO. Subgroup analysis showed that this effect varied by gender ratio, age, study design, exposure assessment method, and income level. Furthermore, PM2.5 , PM10 , and NO2 had negative effects on CKD even within the World Health Organization-recommended acceptable concentrations. Our results further confirmed the adverse effect of air pollution on the risk of CKD. These findings can contribute to enhance the awareness of the importance of reducing air pollution among public health officials and policymakers.


Subject(s)
Air Pollutants , Air Pollution , Renal Insufficiency, Chronic , Humans , Air Pollutants/adverse effects , Particulate Matter/adverse effects , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/chemically induced
7.
Anim Sci J ; 94(1): e13891, 2023.
Article in English | MEDLINE | ID: mdl-38088251

ABSTRACT

This experiment was conducted to investigate the effects of magnolol on the oxidative parameters and jejunum injury induced by diquat in broiler chickens. This test adopts a 2 × 2 factors design, a total of 288 one-day-old male AA broiler chicks randomly allocated to four groups, consisting of six replicates of 12 birds each, which was then denoted as CON group, diquat (DIQ) group (16 mg/kg BW diquat was injected into birds at the age of 21 days), magnolol (MAG) group (basic bird diet supplemented with 300 mg/kg magnolol), and MAG + DIQ group. At 21 days of age, broilers in the DIQ group and the MAG + DIQ group were intraperitoneally injected with 16 mg/kg BW diquat. Results showed that diet supplementing with MAG could alleviate the decrease of ADG to a certain extent after exposure to DIQ. Addition of magnolol to the diet alleviated the decrease of ADG during injection, antioxidant enzymes, and gene expression and increased the markers of oxidative damage induced by diquat induction. Magnolol supplement reversed the increase of apoptotic cells in the diquat-induced chicken jejunum. RNA sequencing showed that PI3K-Akt, calcium, and NF-kappa B signaling pathways were the main enrichment pathways between the DIQ group and the MAG + DIQ group. Our findings revealed that magnolol may improve antioxidant enzyme activity and expression of related genes through the PI3K-Akt pathway to alleviate oxidative stress.


Subject(s)
Antioxidants , Chickens , Animals , Male , Antioxidants/metabolism , Chickens/metabolism , Diet/veterinary , Dietary Supplements , Diquat/adverse effects , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
8.
Ecotoxicol Environ Saf ; 268: 115711, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979351

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP), as a common endocrine disrupting chemicals, can induce toxicity to reproductive system. However, the mechanism remains to be explored. In our study, DEHP exposure induced testicular injury in rats. The high throughput transcriptional sequencing was performed to identify differentially expressed genes (DEGs) between the treatment and control groups. KEGG analysis revealed that DEGs were enriched in apoptosis, PPARα, and ER stress pathway. DEHP up-regulated the expression of PPARα, Bax, Bim, caspase-4. GRP78, PERK, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. This view has also been confirmed in TM3 and TM4 cells. In vitro, after pre-treatment with GW6471 (an inhibitor of PPARα) or GSK (an inhibitor of PERK), the apoptosis was inhibited and mitochondrial dysfunction was improved. Moreover, the improvement of mitochondrial dysfunction decreased the expression of PERK pathway by using SS-31(a protective agent for mitochondrial function). Interestingly, ER stress promoted the accumulation of ROS by ERO1L (the downstream of CHOP during ER stress), and the ROS further aggravated the ER stress, thus forming a feedback loop during the apoptosis. In this process, a vicious cycle consisting of PERK, eIF2α, ATF4, CHOP, ERO1L, ROS was involved. Taken together, our results suggested that mitochondrial dysfunction and ER stress-ROS feedback loop caused by PPARα activation played a crucial role in DEHP-induced apoptosis. This work provides insight into the mechanism of DEHP-induced reproductive toxicity.


Subject(s)
Diethylhexyl Phthalate , Rats , Animals , Diethylhexyl Phthalate/toxicity , PPAR alpha/genetics , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Apoptosis/genetics , Endoplasmic Reticulum Stress , Mitochondria/metabolism
9.
Environ Sci Pollut Res Int ; 30(49): 107703-107715, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37740811

ABSTRACT

Prolonged exposure to arsenic can cause nonalcoholic steatohepatitis (NASH). The NOD-like receptor protein 3 (NLRP3) inflammasome plays an essential role in the process of NASH. However, the mechanism by which arsenic promotes NLRP3 expression remains unclear. Three-month NaAsO2 gavage led to the nuclear factor-κB (NF-κB) signaling pathway activation and NASH. Additionally, NaAsO2 upregulated the level of Filamin A (FLNA) and pyroptosis, thereby activating the NLRP3 inflammasome in SD rat liver. Using FLNA siRNA, NASH-associated inflammation and pyroptosis were clearly mitigated by reducing activation of the NLRP3 inflammasome. Furthermore, arsenic treatment facilitated activation of the NF-κB signaling pathway and promoted p-p65 translocation into the nucleus. Chromatin immunoprecipitation (Ch-IP) assay indicated that FLNA promoted p65 binding to the NLRP3 gene and upregulated the transcription of NLRP3, ultimately leading to pyroptosis and NASH. Our findings indicate that FLNA and pyroptosis are strongly associated with NASH induced by NaAsO2. Collectively, the findings of this study indicated that FLNA mediates NF-κB signaling pathway-induced activation of the NLRP3 inflammasome and ultimately activates pyroptosis and NASH upon NaAsO2 exposure. This information may be useful for improving therapeutic strategies against arsenic-induced NASH.


Subject(s)
Arsenic , Non-alcoholic Fatty Liver Disease , Rats , Animals , Inflammasomes/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , NLR Proteins , Filamins , Rats, Sprague-Dawley
10.
Sci Total Environ ; 905: 167202, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37730054

ABSTRACT

Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.


Subject(s)
Arsenic , Ferroptosis , Insulin Resistance , Humans , Insulin Resistance/physiology , Transcription Factors/metabolism , Arsenic/toxicity , Reactive Oxygen Species/metabolism , Methylation , Insulin , Glutathione Transferase/metabolism
11.
Biomed Pharmacother ; 165: 115192, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37487443

ABSTRACT

N6-methyladenosine (m6A) methylation modification is one of the most prevalent epigenetic modifications of eukaryotic RNA. m6A methylation is widely associated with many biological processes through the modification of RNA metabolism and is associated with multiple disease states. As a newly discovered regulatory cell death in recent years, ferroptosis is an iron-dependent cell death characterized by excessive lipid peroxidation. Emerging evidence supports that ferroptosis has a significant role in the progression of diverse diseases. Besides, the key regulators of ferroptosis exhibit aberrant m6A levels under different pathological conditions. However, the correlation between m6A-modified ferroptosis and multiple diseases has not been well elucidated. In this review, we summarized the functions of m6A in ferroptosis, which are associated with the initiation and progression of multiple diseases. Investigating the role of m6A in ferroptosis might both facilitate a better understanding of the pathogenesis of these diseases and provide new opportunities for targeted treatment.


Subject(s)
Adenine , Disease Progression , Ferroptosis , RNA Methylation , RNA , RNA/metabolism , Iron/metabolism , Lipid Peroxidation , Protein Binding , Humans
12.
Front Oncol ; 13: 1151321, 2023.
Article in English | MEDLINE | ID: mdl-37377917

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the leading cause of cancer-related mortality, primarily due to the abundance of cancer-associated fibroblasts (CAFs), depleted effector T cells, and increased tumor cell stemness; hence, there is an urgent need for efficient biomarkers with prognostic and therapeutic potential. Here, we identified BHLHE40 as a promising target for PDAC through comprehensive analysis and weighted gene coexpression network analysis of RNA sequencing data and public databases, taking into account the unique characteristics of PDAC such as cancer-associated fibroblasts, infiltration of effector T cells, and tumor cell stemness. Additionally, we developed a prognostic risk model based on BHLHE40 and three other candidate genes (ITGA2, ITGA3, and ADAM9) to predict outcomes in PDAC patients. Furthermore, we found that the overexpression of BHLHE40 was significantly associated with T stage, lymph node metastasis, and American Joint Committee on Cancer (AJCC) stage in a cohort of 61 PDAC patients. Moreover, elevated expression levels of BHLHE40 were validated to promote epithelial-mesenchymal transition (EMT) and stemness-related proteins in BXPC3 cell lines. Compared to the parent cells, BXPC3 cells with BHLHE40 overexpression showed resistance to anti-tumor immunity when co-cultured with CD8+ T cells. In summary, these findings suggest that BHLHE40 is a highly effective biomarker for predicting prognosis in PDAC and holds great promise as a target for cancer therapy.

13.
Front Microbiol ; 14: 1109273, 2023.
Article in English | MEDLINE | ID: mdl-36891396

ABSTRACT

Maternal antibody IgG, the main antibody in colostrum, plays an important role in neonates protection. Commensal microbiota is closely related to host antibody repertoire. However, there are few reports on how maternal gut microbiota affects maternal antibody IgG transfer. In the present study, we investigated the effects of altering the gut microbiota (treated with antibiotics during pregnancy) on maternal IgG transportation and offspring absorption and explored its underlying mechanisms. Results showed that antibiotic treatment during pregnancy significantly decreased maternal cecal microbial richness (Chao1 and Obesrved species) and diversity (Shannon and Simpson). Plasma metabolome enriched significant changes in the process of bile acid secretion pathway, and the concentration of deoxycholic acid, a secondary metabolite of microorganisms was lowered. Flow cytometry analysis indicated that antibiotic treatment promoted the number of B cells and abated the number of T, DC and M1 cells in intestinal lamina propria of dams. Surprisingly, the serum IgG level in antibiotic treated dams was significantly increased, while IgG contents in colostrum was decreased. Moreover, pregnancy antibiotic treatment in dams was reduced the expression of FcRn, TLR4 and TLR2 in breast of dams and in duodenum and jejunum of neonates. Furthermore, TLR4-/- and TLR2-/- knock-out mice showed a lower FcRn expression in breast of dams and in duodenum and jejunum of neonates. These findings suggest that maternal intestine bacteria may affect the maternal IgG transfer through regulating the breast TLR4 and TLR2 of dams.

14.
Ecotoxicol Environ Saf ; 253: 114662, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36801541

ABSTRACT

In general populations, insulin resistance (IR) is related to perfluorooctane sulfonate (PFOS), a persistent organic pollutant. However, the underlying mechanism remains unclear. In this study, PFOS induced mitochondrial iron accumulation in the liver of mice and human hepatocytes L-O2. In the PFOS-treated L-O2 cells, mitochondrial iron overload preceded the occurrence of IR, and pharmacological inhibition of mitochondrial iron relieved PFOS-caused IR. Both transferrin receptor 2 (TFR2) and ATP synthase ß subunit (ATP5B) were redistributed from the plasma membrane to mitochondria with PFOS treatment. Inhibiting the translocation of TFR2 to mitochondria reversed PFOS-induced mitochondrial iron overload and IR. In the PFOS-treated cells, ATP5B interacted with TFR2. Stabilizing ATP5B on the plasma membrane or knockdown of ATP5B disturbed the translocation of TFR2. PFOS inhibited the activity of plasma-membrane ATP synthase (ectopic ATP synthase, e-ATPS), and activating e-ATPS prevented the translocation of ATP5B and TFR2. Consistently, PFOS induced ATP5B/TFR2 interaction and redistribution of ATP5B and TFR2 to mitochondria in the liver of mice. Thus, our results indicated that mitochondrial iron overload induced by collaborative translocation of ATP5B and TFR2 was an up-stream and initiating event for PFOS-related hepatic IR, providing novel understandings of the biological function of e-ATPS, the regulatory mechanism for mitochondrial iron and the mechanism underlying PFOS toxicity.


Subject(s)
Insulin Resistance , Iron Overload , Humans , Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Iron/metabolism , Liver/metabolism , Mitochondria/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism
15.
Eur J Surg Oncol ; 49(3): 560-567, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36404253

ABSTRACT

PURPOSE: There is approximately 10%-50% of papillary thyroid carcinoma (PTC) patients with Hashimoto's thyroiditis (HT). In this research, we sought to better understand the role of HT in PTC progression as well as lymph node metastasis. METHODS: It is a retrospective and cross-sectional study, and 4131 PTC patients who underwent thyroidectomy were finally enrolled. Chi-square test, univariate and multivariate logistic regression analyses were employed to evaluate both the risk factors and the critical roles of HT during PTC metastasis. RESULT: In this cohort, 1555 patients (37.6%) were diagnosed with HT. According to multivariate analysis, male sex, high levels of TG and TPOAb, tumor extrathyroidal extension, maximum diameter >1 cm, and multifocality were independent risk factors for both central lymph node metastasis (CLNM) and lateral lymph node metastasis (LLNM). In addition, age <55 years and smoking were risk factors for CLNM, while CLNM was one of the risk factors for LLNM. Furthermore, HT was suggested a valuable protective factor for both CLNM and LLNM. In patients with HT, the total number of central lymph nodes was higher, while the positive rate was lower. Compared with those without HT, age and sex did not predict CLNM and LLNM in patients with HT. CONCLUSION: HT is considered a protective factor for both CLNM and LLNM in PTC. For patients with HT, surgeons should pay more attention to the preservation of parathyroid gland and the protection of recurrent laryngeal nerve due to less lymph node metastasis. Otherwise, radical operation is highly recommended.


Subject(s)
Carcinoma, Papillary , Hashimoto Disease , Thyroid Neoplasms , Humans , Male , Middle Aged , Thyroid Cancer, Papillary/pathology , Retrospective Studies , Thyroid Neoplasms/pathology , Lymphatic Metastasis/pathology , Cross-Sectional Studies , Carcinoma, Papillary/pathology , Hashimoto Disease/pathology , Lymph Nodes/pathology , Risk Factors , Biomarkers
16.
Curr Oncol Rep ; 25(2): 93-105, 2023 02.
Article in English | MEDLINE | ID: mdl-36585960

ABSTRACT

PURPOSE OF REVIEW: The efficacy of anti-EGFR therapy is still unfavorable in recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) patients. Disorder of antitumor immunity and aberrantly expressed checkpoint biomarkers had been validated to involve anti-EGFR therapy tolerance and efficacy. Here we review the immunomodulation of anti-EGFR therapy in the tumor immune microenvironment (TIME) of HNSCC and assist clinicians in finding the potential strategies to rescue anti-EGFR tolerance therapy in the era of immunotherapy for HNSCC. RECENT FINDINGS: Anti-EGFR therapy, especially cetuximab, was validated to induce the innate and adaptive immune responses of HNSCC patients. It is mainly through inducing natural killer (NK) cells mediating antibody-dependent cell-mediated cytotoxicity (ADCC), recruiting multiple tumor-infiltrating immune cells, and finally remodeling the TIME. Moreover, mountains of preclinical models and clinical trials revealed that combining anti-EGFR agents with immunotherapy could enhance the antitumor effectiveness in HNSCC. Anti-EGFR therapy may usher in another dawn in the treatment of patients with HNSCC through combination with immunotherapy. We offer an overview of the ongoing efforts to make out the immunomodulation of the EGFR pathway in both innate and adaptive immune responses; update the constant preclinical models and clinical trials for the combination of anti-EGFR and immunotherapy in HNSCC; and finally evaluate the efficacy and advantages of the combination therapeutic strategies in clinical use.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Head and Neck Neoplasms/drug therapy , Cetuximab/therapeutic use , Immunotherapy , Tumor Microenvironment
17.
Cell Biol Toxicol ; 39(5): 2165-2181, 2023 10.
Article in English | MEDLINE | ID: mdl-35226250

ABSTRACT

N6-methyladenosine (m6A) messenger RNA methylation is the most widespread gene regulatory mechanism affecting liver functions and disorders. However, the relationship between m6A methylation and arsenic-induced hepatic insulin resistance (IR), which is a critical initiating event in arsenic-induced metabolic syndromes such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), remains unclear. Here, we showed that arsenic treatment facilitated methyltransferase-like 14 (METTL14)-mediated m6A methylation, and that METTL14 interference reversed arsenic-impaired hepatic insulin sensitivity. We previously showed that arsenic-induced NOD-like receptor protein 3 (NLRP3) inflammasome activation contributed to hepatic IR. However, the regulatory mechanisms underlying the role of arsenic toward the post-transcriptional modification of NLRP3 remain unclear. Here, we showed that NLRP3 mRNA stability was enhanced by METTL14-mediated m6A methylation during arsenic-induced hepatic IR. Furthermore, we demonstrated that arsenite methyltransferase (AS3MT), an essential enzyme in arsenic metabolic processes, interacted with NLRP3 to activate the inflammasome, thereby contributing to arsenic-induced hepatic IR. Also, AS3MT strengthened the m6A methylase association with NLRP3 to stabilize m6A-modified NLRP3. In summary, we showed that AS3MT-induced m6A modification critically regulated NLRP3 inflammasome activation during arsenic-induced hepatic IR, and we identified a novel post-transcriptional function of AS3MT in promoting arsenicosis.


Subject(s)
Arsenic , Insulin Resistance , Humans , Arsenic/toxicity , Arsenic/metabolism , Diabetes Mellitus, Type 2/metabolism , Inflammasomes/metabolism , Liver , Methyltransferases/genetics , Methyltransferases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism
18.
Tzu Chi Med J ; 34(4): 394-401, 2022.
Article in English | MEDLINE | ID: mdl-36578647

ABSTRACT

Uremic pruritus (UP) is common in the late stages of chronic kidney disease. Currently, there is a lack of effective treatment for UP. Limited evidence exists on the therapeutic effect of omega-3 fatty acid (O3FA). The aim of this study was to evaluate the efficacy of O3FA supplements in UP patients. We evaluated the efficacy of O3FA supplements in patients with UP through a systematic review and a meta-analysis of randomized control trials retrieved from PubMed, Embase, Cochrane Library, CINAHL, and ClinicalTrials.gov databases. The included studies were summarized and assessed for the risk of bias, and pruritus assessment results were analyzed. To compared with a controlled group, five articles including 164 participants published between 2012 and 2019 using different pruritus scales reported that patients taking O3FA supplement exhibited no significant decrease in the pruritus score (standardized mean difference [SMD] =1.34, 95% confidence interval [CI] = -2.70-0.01, P = 0.05), but three articles using same pruritus scale significant decrease Duo pruritus score (SMD = -0.85, 95% CI = -1.39 to -0.30, P < 0.05). O3FA supplement could be an appealing complementary therapy for UP patients. More rigorously designed studies are needed before recommending the O3FA supplement.

19.
Front Genet ; 13: 990301, 2022.
Article in English | MEDLINE | ID: mdl-36276934

ABSTRACT

Background: Disorders of CD274 and PDCD1LG2 contribute to immune escape in human cancers, and treatment with anti-programmed death receptor 1 (PD-1) has been widely used in recurrent or metastatic tumors. However, integrated studies considering CD274 and PDCD1LG2 across cancers remain limited. Materials and Methods: Differences in expression levels of CD274 and PDCD1LG2 were analyzed in diverse cancer types using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The clinical information and matched expression profiles of TCGA patients were obtained to determine the prognostic value of CD274 and PDCD1LG2. Moreover, correlations between CD274 and PDCD1LG2 and the immune signature were analyzed by exploring the TIMER2 and TISIDB databases. We also investigated correlations between CD274 and PDCD1LG2 and immunotherapeutic biomarkers, including mismatch repair (MMR), tumor mutation burden (TMB), microsatellite instability (MSI), and DNA methylation. Results: Expression levels of CD274 and PDCD1LG2 varied across multiple cancer types. CD274 and PDCD1LG2 not only impacted the prognosis of patients with cancer but were associated with clinical characteristics (lymph node metastasis, tumor stage, and sex) in kidney renal papillary cell carcinoma, thyroid carcinoma, and some other cancer types. Typically, CD274 and PDCD1LG2 could be strongly correlated with macrophages, dendritic cells, neutrophils, and CD8+ T-cells. Furthermore, CD274 and PDCD1LG2 expression were associated with various immunosuppressive biomarkers, such as CTLA4, TIGIT, and LAG3. In addition, CD274 and PDCD1LG2 were significantly associated with MMR, TMB, MSI, and DNA methylation. Finally, enrichment analysis confirmed that CD274 and PDCD1LG2 were associated with numerous biological pathways, such as: "Activation of Immune Reactions" and "Epithelial-Mesenchymal Transition," suggesting that CD274 and PDCD1LG2 play crucial roles in cancer immunity and tumor metastasis. Conclusion: CD274 and PDCD1LG2 play critical roles in cancer progression and immune response and could serve as effective biomarkers to predict the prognosis and immune signature of cancer.

20.
Environ Toxicol Pharmacol ; 96: 103981, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36182042

ABSTRACT

Hepatic insulin resistance (IR) is the primary pathology of type 2 diabetes (T2D). The role of the NOD-like receptor protein 3 (NLRP3) inflammasome in arsenic-induced hepatic IR has been previously demonstrated. However, the mechanism of the arsenic-induced activation of the NLRP3 inflammasome is still unclear. Here, we demonstrate that NaAsO2 downregulated the mRNA and protein level of Annexin A1 (AnxA1), an anti-inflammatory factor, in rat livers and L-02 cells. Moreover, AnxA1 overexpression significantly alleviated arsenic-induced NLRP3 inflammasome activation and IR in L-02 cells. Importantly, Co-immunoprecipitation (Co-IP) results showed that AnxA1 1-190 peptide could bind to the domain encompassing amino acids 1-210 and 211-550 of NLRP3. In conclusion, our experiments demonstrated that arsenic exposure could activate the NLRP3 inflammasome and IR by inhibiting the AnxA1 activity. These findings suggest that AnxA1 may be a promising therapeutic target of arsenicosis.


Subject(s)
Annexin A1 , Arsenic , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Rats , Annexin A1/genetics , Annexin A1/metabolism , Arsenic/toxicity , Arsenic/metabolism , Diabetes Mellitus, Type 2/metabolism , Inflammasomes/metabolism , Liver/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...