Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters











Publication year range
1.
ACS Omega ; 9(36): 37910-37922, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39281935

ABSTRACT

Electrocatalytic degradation enables the efficient treatment of chlorinated pollutants (COPs); however, its application has been significantly hindered by the large amounts of unsafe intermediate products. In this study, we present a single-atom nickel with single-walled carbon nanotubes (SWCNTs) as an electrochemical reactor for the complete elimination of chlorophenols. Distinct products and reductive mechanisms were observed for Ni-N-C compared to Cu-N-C. Ni-N-C incorporation has a novel degradation pathway for efficient chlorophenol degradation involving hydrodechlorination and the electro-Fenton process. Most importantly, the weak adsorption between the chlorophenols and the SWCNTs promoted their dechlorination by the attached active atomic hydrogen (H*) formed on the Ni-N-C. Meanwhile, the SWCNTs improved the reduction of O2 to H2O2, which was subsequently decomposed by Ni-N-C to form hydroxyl radicals (·OH) for phenol oxidation. As a result, the degradation rate of 4-chlorophenol was increased by 5 and 10 times compared with those of the Ni-N-C and SWCNTs alone, respectively. The first-order reaction rate constant was 2.7 h-1, and the metal mass kinetics constant was 1956.5 min-1g-1. Aromatic COPs containing benzene rings could be degraded, but chloroacetic acids could not. This study demonstrates a new design for multifunctional electrochemical degradation that functions via dechlorination and the ·OH activation mechanism.

2.
Water Res ; 266: 122393, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39243463

ABSTRACT

Microbial amino acid composition (AA) reflects adaptive strategies of cellular and molecular regulations such as a high proportion of acidic AAs, including glutamic and aspartic acids in alkaliphiles. It remains understudied how microbial AA content is linked to their pH adaptation especially in natural environments. Here we examined prokaryotic communities and their AA composition of genes with metagenomics for 39 water and sediments of East African lakes along a gradient of pH spanning from 7.2 to 10.1. We found that Shannon diversity declined with the increasing pH and that species abundance were either positively or negatively associated with pH, indicating their distinct habitat preference in lakes. Microbial communities showed higher acidic proteomes in alkaline than neutral lakes. Species acidic proteomes were also positively correlated with their pH preference, which was consistent across major bacterial lineages. These results suggest selective pressure associated with high pH likely shape microbial amino acid composition both at the species and community levels. Comparative genome analyses further revealed that alkaliphilic microbes contained more functional genes with higher acidic AAs when compared to those in neutral conditions. These traits included genes encoding diverse classes of cation transmembrane transporters, antiporters, and compatible solute transporters, which are involved in cytoplasmic pH homeostasis and osmotic stress defense under high pH conditions. Our results provide the field evidence for the strong relationship between prokaryotic AA composition and their habitat preference and highlight amino acid optimization as strategies for environmental adaptation.

3.
Sci Total Environ ; 950: 175197, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39094654

ABSTRACT

East African lakes, especially soda lakes, are home habitats for massive numbers of wildlife such as flamingos, mammals, and fishes. These lakes are known for their high primary production due to local high temperatures, light intensities, and alkalinity (inorganic carbon). However, these lakes, normally within remote areas, receive low nutrient inputs. Ammonium (NH4+) recycling and/or nitrogen fixation can become the major N supply mechanisms for phytoplankton. However, the driving forces on microbial N nutrition in lakes with minimal anthropogenic disturbance remain poorly understood. Using stable isotope tracer techniques, NH4+ recycling rates were measured in 18 lakes and reservoirs in East Africa (Tanzania and Kenya) during the dry season in early 2020. Three functional genes (nifH, gdh, and ureC) relating to microbial N nutrition were also measured. The regeneration of NH4+ supported up to 71 % of the NH4+ uptake. Positive community biological NH4+ demands (CBAD) for all lakes and reservoirs indicate an obvious N demand from microbial community. Our study provides clear evidence that microbial NH4+ uptake rates linked closely to the dissolved organic matter (DOM) properties (e.g., the absorption coefficient at 254 nm, percents of total fluorescence intensity contributed by microbial humic-like and protein-like components) and that water residence time drives microbial NH4+ recycling by regulating the duration of in-lake DOM processing and influencing algal growth. Phytoplankton, especially those of Cyanophyceae, showed maximum biomass and higher NH4+ recycling rates at a certain range of water residence time (e.g., 5-8 years). However, CBAD showed a decreasing trend with longer water residence time, which may be influenced by changes in the algal community composition (e.g., % Cyanophyceae vs. % Bacillariophyceae). These results indicate that DOM dynamics and the water residence time have the potential to facilitate the understanding of microbial nitrogen supply status in East African lakes.


Subject(s)
Environmental Monitoring , Lakes , Nitrogen , Phytoplankton , Ammonium Compounds/analysis , Kenya , Lakes/chemistry , Lakes/microbiology , Nitrogen/analysis , Tanzania , Water Pollutants, Chemical/analysis
4.
Microbes Infect ; : 105399, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084397

ABSTRACT

The Drosophila Imd pathways are well-known mechanisms involved in innate immunity responsible for Gram-negative (G-) bacterial infection. The intensity and durability of immunity need to be finely regulated to keep sufficient immune activation meanwhile avoid excessive immune response. In this study, we firstly demonstrated that miR-190 can downregulate the expression levels of antimicrobial peptides (AMPs) in the Imd immune pathway after Escherichia coli infection using the miR-190 overexpression flies and the miR-190KO/+ flies. Secondly, miR-190 overexpression significantly reduces while miR-190 KO increases Drosophila survival rates upon lethal Enterobacter cloacae infection. Thirdly, we further demonstrated that miR-190 negatively regulates innate immune responses by directly targeting both RA/RB and RC isoforms of Tab2. In addition, the dynamic expression pattern of AMPs (Dpt, AttA, CecA1), miR-190 and Tab2 in the wild-type flies reveals that miR-190 play an important role in Drosophila immune homeostasis restoration at the late stage of E. coli infection. Collectively, our study reveals that miR-190 can downregulate the expression of AMPs by targeting Tab2 and promote immune homeostasis restoration in Drosophila Imd pathway. Our study provides new insights into the regulatory mechanism of animal innate immune homeostasis.

5.
Environ Pollut ; 344: 123341, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211878

ABSTRACT

Photocatalysis has received significant attention as a technology that can solve environmental problems. Metal-organic frameworks are currently being used as novel photocatalysts but are still limited by the rapid recombination of photogenerated carriers, low photogenerated electron migration efficiency and poor solar light utilization rate. In this work, a novel photocatalyst was successfully constructed by introducing Cu species into thermal activated mixed-ligand NH2-MIL-125 (Ti) via defect engineering strategy. The constructed defect structure not only provided 3D-interconnected gas transfer channels, but also offered suitable space to accommodate introduced Cu species. For the most effective photocatalyst 0.2Cu/80%NH2-MIL-125 (300 °C) with optimized Cu content, the photocatalytic degradation rate of CH3SH achieved 4.65 times higher than that of pristine NH2-MIL-125 under visible light (λ > 420 nm). At the same time, it showed great degradation efficiency under natural sunlight, 100 ppm CH3SH was completely removed within 25 min in full solar light illumination. The improved catalytic efficiency is mainly due to the synergistic effect of the integrated Schottky junction and rich-defective NH2-MIL-125, which improved the bandgap and band position, and thus facilitated the separation and transfer of the photo-generated carriers. This work provided a facile way to integrate Schottky junctions and rich-defective MOFs with high stability. Due to its excellent degradation performance under sunlight, it also offered a prospective strategy for rational design of high-efficiency catalysts applied in environmental technologies.


Subject(s)
Copper , Titanium , Sulfhydryl Compounds , Introduced Species , Sunlight
6.
Discov Med ; 35(179): 1134-1146, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058079

ABSTRACT

BACKGROUND: Inflammation and oxidative stress (OS) are major causes of aneurysmal subarachnoid hemorrhage (aSAH)-induced early brain injury (EBI). Eriocitrin (EC), a flavonoid compound, has anti-inflammatory and antioxidant actions. However, there is still no relevant studies on the role of EC in SAH. Accordingly, this research aims to clarify the anti-OS and anti-inflammatory efficacy of EC in SAH. METHOD: Rat SAH model was established in vivo and administered with Eriocitrin (25 mg/kg). In vitro, BV2 cells were exposed to oxyhemoglobin (OxyHb) for 24 hours and pretreated with Eriocitrin (1 uM/mL, 2 uM/mL, 4 uM/mL) for 30 minutes. Water maze experiments and neurological function scores were conducted to assess cognitive and motor function. TdT-mediated dUTP Nick-End Labeling (TUNEL) staining was used to detect cortical cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) were used to detect the inflammatory factors and malondialdehyde (MDA), as well as the expression of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Western blots were used to semi quantify nuclear factor erythroid-2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), dual specificity phosphatase 14 (DUSP14) expression. RESULTS: The findings suggest that EC (25 mg/kg) reduced SAH-induced central nervous system (CNS) damage, neuronal apoptosis, inflammatory reactions and OS. Regarding a mechanistic study, EC enhanced Nrf2 and NF-κB by increasing DUSP14 activation, thereby reducing the inflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6. In addition, EC decreased MDA while markedly elevating SOD and enhancing GSH-px. Furthermore, specifically inhibiting DUSP14 expression via using protein-tyrosine-phosphatase (PTP) inhibitor IV, neutralized the protective action of EC and aggravated inflammation and OS. In vitro experiments of OxyHb-induced BV2 cells revealed that EC promoted Nrf2 while markedly suppressing NF-κB by increasing DUSP14 activation, thereby reducing the concentrations of the above inflammatory cytokines. Moreover, EC decreased MDA while evidently increasing SOD and GSH-px. CONCLUSION: In summary, this paper lays a theoretical grounding for EC treatment of SAH-induced inflammatory reactions and OS by regulating DUSP14.


Subject(s)
NF-kappa B , Subarachnoid Hemorrhage , Rats , Animals , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use , Rats, Sprague-Dawley , Oxidative Stress , Inflammation/drug therapy , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use
7.
Insect Biochem Mol Biol ; 162: 104013, 2023 11.
Article in English | MEDLINE | ID: mdl-37804878

ABSTRACT

The NF-κB/Relish, as a core transcription factor of Drosophila immune deficiency (Imd) pathway, activates the transcriptions of antimicrobial peptides (AMPs) to combat gram-negative bacterial infections, but its role in regulating miRNA expression during immune response has less been reported. We here describe a negative feedback loop of Imd signaling mediated by Relish/miR-275/Dredd that controls Drosophila immune homeostasis after Escherichia coli (E. coli) infection. Our results demonstrate that Relish may directly activate the transcription of miR-275 via binding to its promoter in vitro and vivo, particularly miR-275 further inhibits the expression of Dredd through binding to its 3'UTR to negatively control Drosophila Imd immune response. Remarkably, the ectopic expression of miR-275 significantly reduces Drosophila lifespan. More importantly, our work uncovers a new mechanism by which Relish can flexibly switch its role to maintain Drosophila immune response and homeostasis during infection. Collectively, our study not only reveals the functional duality of Relish in regulating immune response of Drosophila Imd pathway, but also provides a new insight into the maintenance of animal innate immune homeostasis.


Subject(s)
Drosophila Proteins , MicroRNAs , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Escherichia coli/genetics , Feedback , Immunity, Innate , MicroRNAs/metabolism
8.
Environ Sci Pollut Res Int ; 30(52): 111982-111994, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37821739

ABSTRACT

Photochemistry is one of the key processes that shape the quality of dissolved organic matter (DOM) in aquatic systems, yet the photoreactivity of DOM from different sources remains largely unclear. In this study, DOM from 10 typical autochthonous and allochthonous sources in Lake Taihu basin were exposed to simulated sunlight, and quantitative and compositional changes of the DOM were explored by measuring its UV-Visable absorption and fluorescence spectroscopy. Photochemical release of nutrients was also explored during the incubations. Results showed that, although DOM from most sources experienced photobleaching effects with decreased absorption coefficients at 254 nm (a(254)) and fluorescence component intensities after light exposure, photochemical alterations of DOM linked to their original composition. Macrophyte-derived (Potamogeton malaianus) DOM, with the largest molecular size, showed increased a(254), humic- and protein-like fluorescence component (C1 and C2) abundances, and inorganic nutrient concentrations relative to dark controls, indicating photo-release of labile components. However, DOM with relatively higher aromaticity, e.g., from agricultural water and the lake, showed photobleaching effects and increased humification degree, probably due to the loss of aromatic components. Allochthonous anthropogenic DOM, e.g., from sewage, showed stronger photo-ammonification, likely relating to the fresh labile N-containing compositions. The form of inorganic nutrient releases during the DOM photolysis also varied with the original DOM sources. Macrophyte-derived DOM incubations showed larger photo-releases of NO3- and PO43-, while NO2- dominated inorganic nutrient releases during groundwater DOM light incubations. Thus, this study concludes that the photoreactivity of DOM closely relates to its original composition and sources.


Subject(s)
Dissolved Organic Matter , Organic Chemicals , Photolysis , Lakes/chemistry , Spectrometry, Fluorescence/methods , China , Humic Substances/analysis
9.
Water Res ; 245: 120572, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37688860

ABSTRACT

Traditional views indicate that eutrophication and subsequent algal blooms favor denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in lake ecosystems. However, lakes tend to show an increasing propensity for inorganic nitrogen (N) limitation as they become more eutrophic. Thus, the influence of further eutrophication on denitrification and DNRA in eutrophic lakes are unclear due to the uncertainty of N availability. To fill this gap, we investigated the genes abundance (AOA, AOB, nirS, nirK and nrfA) and the composition of N-cycling microbes through quantitative PCR and 16S rRNA sequencing analysis, respectively, in 15 shallow eutrophic lakes of the Yangtze-Huaihe River basin, China. The results indicated that denitrification and DNRA rates could be modulated mainly by their functional gene abundances (nirS, nirK and nrfA), followed by the environmental factors (sediment total organic carbon and nitrogen). Denitrification rates significantly increased from slightly to highly eutrophic lakes, but DNRA rates were not. An explanation is that nitrification provided ample nitrate for denitrification, and this cooperative interaction was indicated by the positive correlation of their gene abundances. In addition, Pseudomonas and Anaeromyxobacter was the dominant genus mediated denitrification and DNRA, showing the potential to perform facultative anaerobic and strict anaerobic nitrate reduction, respectively. High level of dissolved oxygen might favor the facultatively aerobic denitrifiers over the obligately anaerobic fermentative DNRA bacteria in these shallow lakes. Chlorophyll a had a weak but positive effect on the gene abundances for nitrification (AOA and AOB). Further eutrophication had an indirect effect on denitrification and DNRA rates through modulating the genes abundances of N-cycling microbes.


Subject(s)
Ammonium Compounds , Nitrates , Nitrates/analysis , Lakes/analysis , Denitrification , Ecosystem , Chlorophyll A , RNA, Ribosomal, 16S/genetics , Organic Chemicals , Eutrophication , Nitrogen/analysis
10.
Chemosphere ; 342: 140137, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730021

ABSTRACT

Pyrolysis of biomass feedstocks can produce valuable biofuel, however, the final products may present excessive corrosion and poor stability due to the lack of hydrogen content. Co-pyrolysis with hydrogen-rich substances such as waste plastics may compensate for these shortcomings. In this study, the co-pyrolysis of a common biomass, i.e. distiller's grains (DG), and waste polypropylene plastic (PP) were investigated towards increasing the quantity and quality of the production of biofuel. Results from the thermogravimetric analyses showed that the reaction interval of individual pyrolysis of DG and PP was 124-471 °C and 260-461 °C, respectively. Conversely, an interaction effect between DG and PP was observed during co-pyrolysis, resulting in a slower rate of weight loss, a longer temperature range for the pyrolysis reaction, and an increase in the temperature difference between the evolution of products. Likewise, the Coats-Redfern model showed that the activation energies of DG, PP and an equal mixture of both were 42.90, 130.27 and 47.74 kJ mol-1, respectively. It thus follows that co-pyrolysis of DG and PP can effectively reduce the activation energy of the reaction system and promote the degree of pyrolysis. Synergistic effects essentially promoted the free radical reaction of the PP during co-pyrolysis, thereby reducing the activation energy of the process. Moreover, due to this synergistic effect in the co-pyrolysis of DG and PP, the ratio of elements was effectively optimized, especially the content of oxygen-containing species was reduced, and the hydrocarbon content of products was increased. These results will not only advance our understanding of the characteristics of co-pyrolysis of DG and PP, but will also support further research toward improving an efficient co-pyrolysis reactor system and the pyrolysis process itself.

11.
Water Res ; 245: 120544, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703752

ABSTRACT

Internal nutrient loading in shallow lakes has long been known as a key driver of eutrophication, especially after external loading reductions. Earlier efforts have been made to quantity the size and potential release of internal nutrient pools in lakes. Yet, links among substrates, microbial processes, and the size and actual release of internal nutrient pools remain largely unclear. To assess the links, sediment organic matter in Lake Taihu, China, was characterized by combining optical measurements, and lake-wide sediment gross nitrogen (N) transformations were measured using the stable isotope (15N) dilution technique. Meanwhile, respirations and nutrient fluxes across the sediment-water interface (SWI) were measured by conducting intact core continuous-flow incubations. The cause-effect relationships among sediment physicochemical parameters (especially organic matter properties), gross N transformations, extractable nutrient concentrations, and nutrient fluxes across the SWI were revealed by partial least square path models. Results showed that environmental controls on the N transformation rates at different seasons varied, with sediment-derived dissolved organic matter abundance being more important than other variables in driving the rates during summer blooms. This study put a step toward revealing the significant positive effects of sediment organic matter mineralization on porewater nutrient concentrations and then on nutrient fluxes across the SWI at late season. The significant positive correlation between the gross N mineralization rates and ammonium fluxes across the SWI and the estimated considerable volume of net N mineralization in summer further suggested that algal blooms can get substantial inorganic N from sediment N mineralization during the lake N limitation period. Overall, this paper presents new insights into the substrates- and microbial process-driven internal nutrient loading of shallow lakes, which is the fundamental driving force of internal nutrient loading formation.


Subject(s)
Lakes , Phosphorus , Lakes/chemistry , Phosphorus/analysis , Geologic Sediments , Water , Nutrients , Nitrogen/analysis , Eutrophication , China , Environmental Monitoring
12.
J Phys Condens Matter ; 36(2)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37748490

ABSTRACT

The search for suitable electrode materials is crucial for the development of high-performance Na-ion batteries (NIBs). In recent years, significant attention has been drawn to two-dimensional (2D) oxides as potential NIB electrode materials. In this study, employing the first-principles density functional theory method, we investigate the thermodynamic and kinetic properties of Na adsorption and diffusion behavior on the 2D TiO2(010) monolayer. Our findings demonstrate that the 2D anatase TiO2(010) monolayer exhibits enhanced thermodynamic stability. Furthermore, the Na atoms preferentially adsorb on the top of oxygen atoms within the TiO2(010) monolayer, and their diffusion along the [100] direction is characterized by a low energy barrier of 0.054 eV. This comprehensive analysis sheds light on the structural stability, preferred adsorption sites, and diffusion paths of Na atoms on the 2D anatase TiO2(010) monolayer, providing valuable insights into the nature of the material's structure and Na ion transport. Moreover, the 2D structure of the TiO2matrix facilitates short Na diffusion lengths and a large electrode/electrolyte interface, thereby demonstrating the potential of this material as an NIB electrode material.

13.
Foods ; 12(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569143

ABSTRACT

3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) are, respectively, the primary metabolites deriving from the breakdown of phenylurea herbicides and dicarboximide fungicides in both soils and plants, whose residues in vegetable products have a heightened concern considering their higher health risks to humans and greater toxicity than the parent compounds in the environment. In this study, a sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous determination of 3,4-DCA and 3,5-DCA residues in chive products based on the optimization of HPLC-MS/MS chromatographic and mass-spectrometric conditions using the standard substances and the modified QuEChERS preparation technique. The preparation efficiency of 3,4-DCA and 3,5-DCA from chive samples showed that acetonitrile was the best extractant. The combination of the purification agent graphite carbon black + primary secondary amine and the eluting agent acetonitrile + toluene (4:1, v/v) had a satisfactory purification effect. The linear correlation coefficients (R2) were more than 0.996 with the six concentration range of 0.001-1.000 mg/L for 3,4-DCA and 3,5-DCA. The limit of detection and limit of quantitation of this method was 0.6 and 2.0 µg/kg for 3,4-DCA, as well as 1.0 and 3.0 µg/kg for 3,5-DCA, respectively. The matrix effect range of 3,4-DCA and 3,5-DCA in chive tissues was from -9.0% to -2.6% and from -4.4% to 2.3%, respectively. The fortified recovery of 3,4-DCA and 3,5-DCA in chive samples at four spiked levels of 0.001-1.000 mg/kg was 75.3-86.0% and 78.2-98.1%, with the relative standard deviation of 2.1-8.5% and 1.4-11.9%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.6, 2.0, and 1.0, 3.03 for 4-DCA and 3,5-DCA, respectively. This study highlights that the analytical method established here can efficiently and sensitively detect residues of 3,4-DCA and 3,5-DCA residues for monitoring chive products. The method was successfully applied to 60 batches of actual vegetable samples from different regions.

14.
Environ Sci Technol ; 57(28): 10308-10318, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37419883

ABSTRACT

Nonroad agricultural machinery (NRAM) emissions constitute a significant source of air pollution in China. Full-volatility organics originating from 19 machines under 6 agricultural activities were measured synchronously. The diesel-based emission factors (EFs) for full-volatility organics were 4.71 ± 2.78 g/kg fuel (average ± standard deviation), including 91.58 ± 8.42% volatile organic compounds (VOCs), 7.94 ± 8.16% intermediate-volatility organic compounds (IVOCs), 0.28 ± 0.20% semivolatile organic compounds (SVOCs), and 0.20 ± 0.16% low-volatility organic compounds (LVOCs). Full-volatility organic EFs were significantly reduced by stricter emission standards and were the highest under pesticide spraying activity. Our results also demonstrated that combustion efficiency was a potential factor influencing full-volatility organic emissions. Gas-particle partitioning in full-volatility organics could be affected by multiple factors. Furthermore, the estimated secondary organic aerosol formation potential based on measured full-volatility organics was 143.79 ± 216.80 mg/kg fuel and could be primarily attributed to higher-volatility-interval IVOCs (bin12-bin16 contributed 52.81 ± 11.58%). Finally, the estimated emissions of full-volatility organics from NRAM in China (2021) were 94.23 Gg. This study provides first-hand data on full-volatility organic EFs originating from NRAM to facilitate the improvement of emission inventories and atmospheric chemistry models.


Subject(s)
Air Pollutants , Pesticides , Volatile Organic Compounds , Air Pollutants/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Aerosols/analysis
15.
J Immunol ; 211(4): 591-600, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37358278

ABSTRACT

The strength and duration of the NF-κB signaling response must be tightly modulated to avoid an inadequate or excessive immune response. Relish, a core NF-κB transcription factor of the Drosophila Imd pathway, can control the expression of antimicrobial peptides, including Dpt and AttA, to defend against Gram-negative bacterial infections, but whether Relish may regulate miRNA expression to participate in the immune response remains unclear. In this study, taking advantage of Drosophila S2 cells and different overexpression/knockout/knockdown flies, we first found that Relish could directly activate the expression of miR-308 to negatively regulate the immune response and promote the survival of Drosophila during Enterobacter cloacae infection. Second, our results demonstrated that Relish-mediated expression of miR-308 could suppress target gene Tab2 to attenuate the Drosophila Imd pathway signal during the middle and late stages of the immune response. Third, we detected the dynamic expression patterns of Dpt, AttA, Relish, miR-308, and Tab2 in wild-type flies after E. coli infection, which further revealed that the feedback regulatory loop of Relish-miR-308-Tab2 plays a crucial role in the immune response and homeostasis maintenance of the Drosophila Imd pathway. Overall, our present study not only illustrates an important mechanism by which this Relish-miR-308-Tab2 regulatory axis can negatively control the Drosophila immune response and participate in homeostasis maintenance but also provides new insights into the dynamic regulation of the NF-κB/miRNA expression network of animal innate immunity.


Subject(s)
Drosophila Proteins , MicroRNAs , Animals , Drosophila/genetics , Drosophila melanogaster , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Escherichia coli/metabolism , Immunity, Innate/genetics , MicroRNAs/genetics , NF-kappa B/metabolism
16.
Article in English | MEDLINE | ID: mdl-36554760

ABSTRACT

Based on the porous carbon material from citric acid residue, catalysts of different Ce-Mn ratios were prepared with incipient-wetness impregnation (IWI) to delve into their acetone-degrading performance and relevant mechanisms. When the Ce-Mn molar ratio is 0.8, the prepared catalyst Ce0.8-Mn/AC shows abundant and uniformly dispersed Mn and Ce particles on the surface. The content of Mn and Ce on the Ce0.8-Mn/AC surface reaches 5.64% and 0.75%, respectively. At the acetone concentration of 238 mg/m3 (100 ppm), the laws of acetone degradation in different catalysts at different catalyzing temperatures and with various oxygen concentrations were studied, and we found that the rate of acetone degradation by Ce0.8-Mn/AC can exceed 90% at 250 °C. Cerium oxide and manganese oxide are synergistic in the catalytic degradation of acetone. Adding cerium to manganese-based catalysts can increase the oxygen migration rate in the catalysts and thus raise the reduction rate of lattice oxygen in manganese oxide. The results offer new ideas and approaches for the efficient and comprehensive utilization of bio-fermentation by-products, and for the development of cheap and high degradation performance catalysts for acetone.


Subject(s)
Acetone , Oxides , Temperature , Oxides/chemistry , Oxygen , Catalysis
17.
Foods ; 11(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35954054

ABSTRACT

The coix seed is a medicinal and edible plant with rich nutritional and medicinal values. With the expansion of the coix seed consumption market, the problem of coix seed safety has attracted attention worldwide. The aims of this work were to evaluate the contamination of mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), chromium (Cr) and 116 pesticides in coix seeds collected from 12 main producing regions of coix seeds in the Guizhou Province of China and to analyze the major contributors of heavy metal and pesticide contamination in coix seed. The results show that the average contents of Pb, Cd, As and Cr in the 123 coix seed samples were 0.0069, 0.0021, 0.0138 and 0.1107 mg/kg, respectively, while Hg was not detected in all coix seed samples. Among the five heavy metals detected, only the Cr contents of three samples were found to be higher than the contaminant limit of Chinese standard GB2762-2017 (CSGB). A total of 13 pesticides were detected in 29 samples from seven main production regions of coix seeds, accounting for 23.6% of all the samples. The detection rates of chlorpyrifos were the highest (8.13%), followed by fenpropathrin (4.06%), bifenthrin (2.43%) and phoxim (1.62%), while the detection rates of the remaining pesticides were below 1%. Moreover, the residual risk score of dichlorvos was the highest of all the pesticides detected. The pollution index and risk assessment of heavy metals and pesticide residues indicates that coix seeds were at safe levels for consumption. In the production process of coix seeds, the local government should control the soil in areas heavily polluted by heavy metals and strengthen the monitoring and guidance on the scientific and rational use of pesticides.

18.
Sci Total Environ ; 841: 156607, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35690192

ABSTRACT

East African lakes include the most productive and alkaline lake group in the world. Yet, they generally receive fewer nutrient inputs than the densely populated subtropical and temperate lakes in the northern hemisphere. In these lakes with insufficient supplies of inorganic nitrogen, the mineralization of benthic organic matter can play an important role in driving the nutrient cycle and nitrogen loss. Using a suite of stable 15N isotope dilution and tracer techniques, we examined five main processes of the sediment nitrogen cycle in 16 lakes and reservoirs of Tanzania and Kenya, East Africa: gross nitrogen mineralization, ammonium immobilization, dissimilatory nitrate reduction to ammonium (DNRA), and the dinitrogen (N2) production via denitrification and anaerobic ammonium oxidation (anammox). Gross nitrogen mineralization and ammonium immobilization showed the maximum values of 9.84 and 12.39 µmol N kg-1 h-1, respectively. Potential DNRA rates ranged from 0.22 to 8.15 µmol N kg-1 h-1 and accounted for 10 %-74 % (average 25 %) of the total dissimilatory nitrate reduction. Potential nitrate reduction rates in most lakes were dominated by denitrification with a contribution of 26 %-85 % and a mean of 65 %. We further found that the sediment nitrogen transformations were driven mainly by benthic organic matter properties and water column phosphate concentrations, reflecting microbial metabolic responses to the changing carbon and nutrients availability. For instance, autochthonous production of protein-like organic matter attributed to active sediment nitrogen mineralization, DNRA, and denitrification. In contrast, the high degree of humification caused by the inputs of terrestrial humic-like substances slowed down the sediment nitrogen transformations. The contribution of DNRA to total dissimilatory nitrate reduction was significantly positively correlated to sediment C: N ratios. These results indicate that predictions of sediment N supply and loss in East African lakes can be improved by incorporating sediment organic matter properties.


Subject(s)
Ammonium Compounds , Nitrogen , Ammonium Compounds/metabolism , Denitrification , Lakes , Nitrates/analysis , Nitrogen/analysis , Nitrogen Oxides/analysis , Organic Chemicals , Oxidation-Reduction , Tanzania
19.
Chemosphere ; 302: 134901, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35568218

ABSTRACT

The development of a low-concentration methyl mercaptan adsorbing material for an efficient decontamination has become a hot research topic. In this study, carbonization activation was employed with starch and urea as carbon and nitrogen sources, respectively, to prepare a type of starch-based activated carbon. Subsequently, the product was used to adsorb low-concentration methyl mercaptan. Based on sorption experiments and molecular simulations, the underlying mechanism of the adsorption effect of the adsorbent's pore structure and surface oxygen- and nitrogen-containing functional groups on methyl mercaptan molecules were discussed. The results indicated that when the methyl mercaptan equilibrium concentration was 0.197 mg/L, the adsorption capacity of SUAC-16-2 for methyl mercaptan was 78.16 mg/g. Its adsorption performance was better than that of its previously reported counterparts. The well-developed microporous structure of SUAC-16-2 promoted the adsorption of methyl mercaptan. In addition, methyl mercaptan molecules could be broken down to produce CH3S- and H+ by the effect of the surface functional groups. Adjacent carbon atoms containing nitrogen and oxygen functional groups could better adsorb CH3S- and H+, and further strengthen the methyl mercaptan adsorption performance of activated carbon. The study could help to develop new technology for treatment of low concentration of methyl mercaptan in the air.


Subject(s)
Charcoal , Starch , Adsorption , Charcoal/chemistry , Nitrogen/chemistry , Oxygen , Sulfhydryl Compounds/chemistry
20.
Water Res ; 217: 118400, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35413562

ABSTRACT

A lack of understanding the fate of highly toxic organic micropollutants (OMPs) in the equatorial lakes of Tanzania hinders public awareness for protecting these unique aquatic ecosystems, which are precious water resources and stunning wildlife habitats. To address this knowledge gap, the occurrence of 70 anthropogenically-sourced OMPs, including phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), was investigated in the water and sediment of 18 lakes in Tanzania. Similar residue concentrations were found in both compartments, showing higher pollution of PAEs ranging from 835.0 to 13,153.1 ng/L in water and 244.6-8691.8 ng/g dw in sediment, followed by PAHs, while OCPs and PCBs were comparatively lower. According to the multi-criteria scoring method for prioritization, the final OMP priority list for the lake environment in Tanzania comprised 25 chemicals, specifically 5 PAEs (DEHP, DIBP, DBP, DCHP and DMPP), 6 PCBs (PCB153, PCB105, PCB28, PCB156, PCB157 and PCB167), 6 PAHs (BaP, BaA, BbF, Pyr, DahA and InP) and 8 OCPs (cis-chlordane, trans-chlordane, p,p'-DDD, p,p'-DDE, p,p'-DDT, endrin, methoxychlor and heptachlor epoxide), suggesting the key substances for conventional monitoring and pollution control in these equatorial lakes, with an emphasis on PAEs, especially DEHP, due to the top priority and endocrine disruptor properties.


Subject(s)
Diethylhexyl Phthalate , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , China , Chlordan , Ecosystem , Environmental Monitoring/methods , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Tanzania , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL