Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Environ Sci Technol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771797

ABSTRACT

The contamination status of novel organophosphate esters (NOPEs) and their precursors organophosphite antioxidants (OPAs) and hydroxylated/diester transformation products (OH-OPEs/di-OPEs) in soils across a large-scale area in China were investigated. The total concentrations of the three test NOPEs in soil were 82.4-716 ng g-1, which were considerably higher than those of traditional OPEs (4.50-430 ng g-1), OPAs (n.d.-30.8 ng g-1), OH-OPEs (n.d.-0.49 ng g-1), and di-OPEs (0.57-21.1 ng g-1). One NOPE compound, i.e., tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) contributed over 65% of the concentrations of the studied OPE-associated contaminants. A 30-day soil incubation experiment was performed to confirm the influence of AO168 = O on soil bacterial communities. Specific genera belonging to Proteobacteria, such as Lysobacter and Ensifer, were enriched in AO168 = O-contaminated soils. Moreover, the ecological function of methylotrophy was observed to be significantly enhanced (t-test, p < 0.01) in soil treated with AO168 = O, while nitrogen fixation was significantly inhibited (t-test, p < 0.01). These findings comprehensively revealed the contamination status of OPE-associated contaminants in the soil environment and provided the first evidence of the effects of NOPEs on soil microbial communities.

2.
Innovation (Camb) ; 5(4): 100612, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38756954

ABSTRACT

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

3.
Environ Sci Technol ; 58(18): 7986-7997, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657129

ABSTRACT

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.


Subject(s)
Air Pollution, Indoor , Dust , Flame Retardants , Organophosphorus Compounds , Plasticizers , Flame Retardants/analysis , Plasticizers/analysis , Air Pollution, Indoor/analysis , Dust/analysis , China , Organophosphorus Compounds/analysis , Environmental Monitoring , Humans , Air Pollutants/analysis
4.
Environ Sci Technol ; 58(18): 7758-7769, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38669205

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) exposure is suspected to be linked to oxidative damage. Herein, ten PAH human exposure biomarkers [hydroxylated PAH metabolites (OH-PAHs)] and five oxidative stress biomarkers (OSBs) were detected in urine samples collected from participants living in a rural area (n = 181) in Northwestern China. The median molar concentration of ΣOH-PAHs in urine was 47.0 pmol mL-1. The 2-hydroxynaphthalene (2-OHNap; median: 2.21 ng mL-1) was the dominant OH-PAH. The risk assessment of PAH exposure found that hazard index (HI) values were <1, indicating that the PAH exposure of rural people in Jingyuan would not generate significant cumulative risks. Smokers (median: 0.033) obtained higher HI values than nonsmokers (median: 0.015, p < 0.01), suggesting that smokers face a higher health risk from PAH exposure than nonsmokers. Pearson correlation and multivariate linear regression analysis revealed that ΣOH-PAH concentrations were significant factors in increasing the oxidative damage to deoxyribonucleic acid (DNA) (8-hydroxy-2'-deoxyguanosine, 8-OHdG), ribonucleic acid (RNA) (8-oxo-7,8-dihydroguanine, 8-oxoGua), and protein (o, o'-dityrosine, diY) (p < 0.05). Among all PAH metabolites, only 1-hydroxypyrene (1-OHPyr) could positively affect the expression of all five OSBs (p < 0.05), suggesting that urinary 1-OHPyr might be a reliable biomarker for PAH exposure and a useful indicator for assessing the impacts of PAH exposure on oxidative stress. This study is focused on the relation between PAH exposure and oxidative damage and lays a foundation for the study of the health effect mechanism of PAHs.


Subject(s)
Biomarkers , Oxidative Stress , Polycyclic Aromatic Hydrocarbons , Rural Population , Polycyclic Aromatic Hydrocarbons/urine , Humans , China , Risk Assessment , Biomarkers/urine , Male , Female , Environmental Exposure , Middle Aged , Adult
5.
Chemistry ; 30(27): e202400474, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38456559

ABSTRACT

The relationship among chemical structure, physicochemical property and aggregation behavior of organic functional material is an important research topic. Here, we designed and synthesized three bis(squaraine) dyes BSQ1, BSQ2 and BSQ3 through the combination of two kinds of unsymmetrical azulenyl squaraine monomers. Their physicochemical properties were investigated in both molecular and aggregate states. Generally, BSQ1 displayed different assembly behaviors from BSQ2 and BSQ3. Upon fabrication into nanoparticles, BSQ1 tend to form J-aggregates while BSQ2 and BSQ3 tend to form H-aggregates in aqueous medium. When in the form of thin films, three bis(squaraine) dyes all adopted J-aggregation packing modes while only BSQ1 presented the most significant rearrangement of aggregate structures as well as the improvement in the carrier mobilities upon thermal annealing. Our research highlights the discrepancy of aggregation behaviors originating from the molecular structure and surrounding circumstances, providing guidance for the molecular design and functional applications of squaraines.

6.
Burns ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38555238

ABSTRACT

AIMS: To investigate the status of demoralization syndrome and the factors affecting demoralization in burn patients. METHODS: This study employed a cross-sectional research design and utilized a face-to-face questionnaire to gather data from adult burn patients with burn depths classified as second-degree or higher. The Demoralization Scale Mandarin Version, the Perceived Social Support Scale, the Herth Hope Index, and the Medical Coping Method Questionnaire were used to assess the level of demoralization, perceived social support, sense of hope, and coping strategies, respectively. General information, including socio-demographic data and disease characteristics, were collected. The patients' level of demoralization was categorized as the mean ± 1 standard deviation of the DS-MV scores. The data was analyzed using IBM SPSS 26.0 software to explore the relationship between the variables. RESULTS: This study included 381 burn patients with a mean DS-MV score of 34.62 ± 18.319. Of these, 66 (17.3%) had mild demoralization, 241 (63.3%) had moderate demoralization, and 74 (19.4%) had severe demoralization. Cause of burn, total burn area, average monthly income of the individual, occupation, sense of hope, perceived social support, and medical coping strategies were the important factors associated with the severity of demoralization in burn patients. CONCLUSIONS: Patients with burn injuries exhibit a notable prevalence and severity of demoralization indicating focused attention. By considering associated risk factors, healthcare professionals can devise and execute tailored intervention strategies aimed at mitigating the occurrence and intensity of demoralization in burn patients.

7.
Angew Chem Int Ed Engl ; 63(17): e202400372, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38445354

ABSTRACT

The second near-infrared (NIR-II) theranostics offer new opportunities for precise disease phototheranostic due to the enhanced tissue penetration and higher maximum permissible exposure of NIR-II light. However, traditional regimens lacking effective NIR-II absorption and uncontrollable excited-state energy decay pathways often result in insufficient theranostic outcomes. Herein a phototheranostic nano-agent (PS-1 NPs) based on azulenyl squaraine derivatives with a strong NIR-II absorption band centered at 1092 nm is reported, allowing almost all absorbed excitation energy to dissipate through non-radiative decay pathways, leading to high photothermal conversion efficiency (90.98 %) and strong photoacoustic response. Both in vitro and in vivo photoacoustic/photothermal therapy results demonstrate enhanced deep tissue cancer theranostic performance of PS-1 NPs. Even in the 5 mm deep-seated tumor model, PS-1 NPs demonstrated a satisfactory anti-tumor effect in photoacoustic imaging-guided photothermal therapy. Moreover, for the human extracted tooth root canal infection model, the synergistic outcomes of the photothermal effect of PS-1 NPs and 0.5 % NaClO solution resulted in therapeutic efficacy comparable to the clinical gold standard irrigation agent 5.25 % NaClO, opening up possibilities for the expansion of NIR-II theranostic agents in oral medicine.


Subject(s)
Cyclobutanes , Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Nanoparticles/therapeutic use , Theranostic Nanomedicine/methods , Phenols/pharmacology , Cyclobutanes/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy , Photoacoustic Techniques/methods , Cell Line, Tumor
8.
Environ Sci Technol ; 58(8): 3908-3918, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38329000

ABSTRACT

The heterogeneous photodegradation behavior of liquid crystal monomers (LCMs) in standard dust (standard reference material, SRM 2583) and environmental dust was investigated. The measured photodegradation ratios for 23 LCMs in SRM and environmental dust in 12 h were 11.1 ± 1.8 to 23.2 ± 1.1% and 8.7 ± 0.5 to 24.0 ± 2.8%, respectively. The degradation behavior of different LCM compounds varied depending on their structural properties. A quantitative structure-activity relationship model for predicting the degradation ratio of LCMs in SRM dust was established, which revealed that the molecular descriptors related to molecular polarizability, electronegativity, and molecular mass were closely associated with LCMs' photodegradation. The photodegradation products of the LCM compound 4'-propoxy-4-biphenylcarbonitrile (PBIPHCN) in dust, including •OH oxidation, C-O bond cleavage, and ring-opening products, were identified by nontarget analysis, and the corresponding degradation pathways were suggested. Some of the identified products, such as 4'-hydroxyethoxy-4-biphenylcarbonitrile, showed predicted toxicity (with an oral rat lethal dose of 50%) comparable to that of PBIPHCN. The half-lives of the studied LCMs in SRM dust were estimated at 32.2-82.5 h by fitting an exponential decay curve to the observed photodegradation data. The photodegradation mechanisms of LCMs in dust were revealed for the first time, enhancing the understanding of LCMs' environmental behavior and risks.


Subject(s)
Dust , Liquid Crystals , Animals , Rats , Quantitative Structure-Activity Relationship , Photolysis
9.
Environ Sci Technol ; 58(5): 2446-2457, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38178542

ABSTRACT

The 6:2 fluorotelomer sulfonamide (6:2 FTSAm)-based compounds signify a prominent group of per- and polyfluoroalkyl substances (PFAS) widely used in contemporary aqueous film-forming foam (AFFF) formulations. Despite their widespread presence, the biotransformation behavior of these compounds in wastewater treatment plants remains uncertain. This study investigated the biotransformation of 6:2 FTSAm-based amine oxide (6:2 FTNO), alkylbetaine (6:2 FTAB), and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) in aerobic sludge over a 100-day incubation period. The biotransformation of 6:2 fluorotelomer sulfonamide alkylamine (6:2 FTAA), a primary intermediate product of 6:2 FTNO, was indirectly assessed. Their stability was ranked based on the estimated half-lives (t1/2): 6:2 FTAB (no obvious products were detected) ≫ 6:2 FTSA (t1/2 ≈28.8 days) > 6:2 FTAA (t1/2 ≈11.5 days) > 6:2 FTNO (t1/2 ≈1.2 days). Seven transformation products of 6:2 FTSA and 15 products of 6:2 FTNO were identified through nontarget and suspect screening using high-resolution mass spectrometry. The transformation pathways of 6:2 FTNO and 6:2 FTSA in aerobic sludge were proposed. Interestingly, 6:2 FTSAm was hardly hydrolyzed to 6:2 FTSA and further biotransformed to perfluoroalkyl carboxylic acids (PFCAs). Furthermore, the novel pathways for the generation of perfluoroheptanoic acid (PFHpA) from 6:2 FTSA were revealed.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Sewage/chemistry , Oxides , Amines , Fluorocarbons/analysis , Biotransformation , Sulfonamides/metabolism , Water Pollutants, Chemical/analysis
10.
Acad Radiol ; 31(3): 812-821, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37980221

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate whether kinetic heterogeneity in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) improves the specificity of breast cancer (BC) diagnosis. MATERIALS AND METHODS: The DCE-MRI data of patients with benign breast tumours and BC from June 2020 to July 2022 were retrospectively evaluated. MATLAB and SPM were used to determine six major kinetic parameters: peak, enhancement volume, heterogeneity, as well as persistent, plateau, and washout proportions. Continuous variables were compared using the Student's t-test or Mann-Whitney U tests, and categorical variables were compared using the chi-square or Fisher's exact tests. Receiver operating characteristic curves were plotted. The intraclass correlation coefficient (ICC) was used to evaluate agreement between the two observers. Multivariate logistic regression analysis was conducted to calculate the odds ratios (ORs) with 95% confidence intervals (CIs) for the association between benign and malignant breast tumours. RESULTS: In total, 147 patients (mean age, 47 years old) were included in the study, 76 of whom had BC. Data analysis by the two observers showed good consistency in the peak, enhancement volume, persistent proportion, plateau proportion, washout proportion, and heterogeneity, with ICCs of 0.865, 0.988, 0.906, 0.940, 0.740, and 0.867, respectively (p < 0.001). In the DCE kinetic analysis, differences in all the six kinetic parameters were statistically significant (p < 0.05). The area under the curve for heterogeneity was 0.92 (95% CI:0.88,0.97), and the sensitivity and specificity were 0.895 and 0.845, respectively. Multivariate logistic regression analysis showed that heterogeneity was an independent predictor of BC compared to benign breast tumours (OR=2.020; 95% CI:1.316, 3.100; p = 0.001). CONCLUSION: The kinetic heterogeneity of DCE-MRI can effectively distinguish between benign and malignant breast tumours and improve the specificity of BC diagnosis.


Subject(s)
Breast Neoplasms , Contrast Media , Humans , Middle Aged , Female , Kinetics , Retrospective Studies , Breast Neoplasms/pathology , Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Breast/pathology , Diagnosis, Differential
11.
Environ Sci Technol ; 57(48): 20194-20205, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37991390

ABSTRACT

Oil refinery activity can be an emission source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) to the environment, while the contamination profiles in soils remain unknown. This study investigated 44 target PFAS in soil samples collected from an oil refinery in Southeastern China, identified novel PFAS, and characterized their behaviors by assessing their changes before and after employing advanced oxidation using a combination of nontarget analysis and a total oxidizable precursor (TOP) assay. Thirty-four target PFAS were detected in soil samples. Trifluoroacetic acid (TFA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were the dominant PFAS. Twenty-three novel PFAS of 14 classes were identified, including 8 precursors, 11 products, and 4 stable PFAS characterized by the TOP assay. Particularly, three per-/polyfluorinated alcohols were identified for the first time, and hexafluoroisopropanol (HFIP) quantified up to 657 ng/g dw is a novel precursor for TFA. Bistriflimide (NTf2) potentially associated with an oil refinery was also reported for the first time in the soil samples. This study highlighted the advantage of embedding the TOP assay in nontarget analysis to reveal not only the presence of unknown PFAS but also their roles in environmental processes. Overall, this approach provides an efficient way to uncover contamination profiles of PFAS especially in source-impacted areas.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Soil , Water Pollutants, Chemical/analysis , China , Fluorocarbons/analysis , Oxidation-Reduction
12.
Environ Sci Technol ; 57(48): 20127-20137, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37800548

ABSTRACT

Wastewater treatment plants (WWTPs) are typical point sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. The suspect and nontarget screening based on gas chromatography or liquid chromatography-high resolution mass spectrometry were performed on atmosphere, wastewater, and sludge samples collected from two WWTPs in Tianjin to discover emerging PFAS and their fate in this study. A total of 40 PFAS (14 neutral and 26 ionic) and 64 PFAS were identified in the atmosphere and wastewater/sludge, respectively, among which 5 short-chain perfluoroalkyl sulfonamide derivatives, 4 ionic PFAS, and 15 aqueous film-forming foam-related cationic or zwitterionic PFAS have rarely or never been reported in WWTPs in China. Active air sampling is more conducive to the enrichment of emerging PFAS, while passive sampling is inclined to leave out some ultrashort-chain PFAS or unstable transformation intermediates. Moreover, most precursors and intermediates could be enriched in the atmosphere at night, while the PFAS associated with aerosols with high water content or particles enter the atmosphere easily during the day. Although most emerging PFAS could not be eliminated efficiently in conventional treatment units, deep bed filtration and advanced oxidation processes could partly remove some emerging precursors.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Water , China
13.
Nurs Ethics ; : 9697330231193855, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37750018

ABSTRACT

BACKGROUND: There is a high incidence of burns in China and the sequelae of post-burn scar growth, disfigurement, and other body image disorders can cause serious psychological distress to burns patients, and negatively affecting the patient's dignity. However, there is limited knowledge relating to the dignity of burns patients. AIM: To investigate the factors that affect dignity in burns patients. DESIGN: Cross-sectional study. PARTICIPANTS AND RESEARCH CONTEXT: We recruited 323 burn patients from the burn unit of a tertiary care hospital. The Patient Dignity Scale, Burn Specific Health Scale-Brief, Hospital Anxiety and Depression Scale were used to assess burn patients' dignity, quality of life, anxiety, and depression, respectively. 18 sociodemographic variables were included in the questionnaire. ETHICAL CONSIDERATIONS: Before the data were collected, the study protocol was reviewed and approved by the Ethics Committee of the Guangzhou Red Cross Hospital of Jinan University (Reference: 2022-149-02) and all patients provided and signed informed consent forms. FINDINGS: This study included 323 burns patients; of these, 26 (8%) had a mild loss of dignity, 94 (29.1%) had a moderate loss of dignity, 125 (38.7%) had a severe loss of dignity, and 78 (24.1%) had a very severe loss of dignity. The main factors that influence the loss of dignity in burns patients, including the department in which the patient was treated after their burns, gender, the clinical stage of the burn, quality-of-life, depression, resident medical insurance, the cause of the burn, and the burn site. CONCLUSIONS: In most cases, the loss of dignity after burn injury is serious. Clinical health care professionals can provide personalized whole-life dignity care for patients by considering the factors that affect the dignity of burns patients, developing targeted dignity management programs, and implementing individualized interventions to maintain dignity, thus helping burns injury patients return to social life and work.

14.
J Hazard Mater ; 460: 132411, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37666171

ABSTRACT

The objectives of this study were to identify both legacy and emerging per- and polyfluoroalkyl substances (PFAS) from three typical fluoridated industrial parks (FIPs) in China, and to assess their environmental occurrence and fate. Complementary suspect target and nontarget screening were implemented, and a total of 111 emerging PFAS were identified. Based on the multi-mass scale analysis, 25 emerging PFAS were identified for the first time, including 24 per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and 1 ultra-short chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs, C2), with a maximum percentage of 48.2 % in nontarget PFAS (exclude target PFAS). The composition of PFAS identified in different media was influenced by functional groups, carbon chain length, substituents and ether bond insertion, with poly-hydrogen substituted being preferably in water and a more diverse pattern of PFECAs in sediments. The patterns of PFAS homologs revealed distinct differences among the three typical FIPs in the shift of PFAS production patterns. The C4-PFAS and short-chain carboxylic acids (≤C6) were the main PFAS in the Fuxin and Changshu, respectively. In contrast, perfluorooctanoic acid (PFOA, C8) remained dominant in Zibo, and the highest point concentrations in water and sediment were up to 706 µg/L and 553 µg/g, respectively.

15.
J Environ Manage ; 344: 118745, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37562255

ABSTRACT

Efficient removal of perfluoroalkyl acids (PFAAs), especially short-chain ones, from contaminated water is of great challenge and is urgently called for so as to safeguard the ecosystem and human health. Herein, polypyrrole (PPy) functionalized biochar (BC) composites were innovatively synthesized by an in situ self-sacrificial approach to allow efficient capture of PFAAs with different chain lengths. Compared with conventional PPy-based composites synthesized by direct polymerization using FeCl3 as an oxidizing agent, PPy/BC composites were fabricated utilizing freshly generated Fe3+ as an oxidizing agent from self-sacrificial Fe3O4 for pyrrole monomers in situ polymerizing on BC. As a result, with the support of BC and gradual release of Fe3+, PPy overcame its tendency to aggregate and became uniformly dispersed on BC, and meanwhile, PPy could well tailor the surface chemistry of BC to endow its positively charged surface. Consequently, the composites exhibited strong sorption capacities of 3.89 and 1.53 mmol/g for short-chain perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), 2.55 and 1.22 mmol/g for long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, which were superior to those of pristine BC, commercial activated carbon, and anion exchange resins reported. Additionally, they could effectively remove 17 different classes of per- and polyfluoroalkyl substances (PFAS) (removal >95%) from actual PFAS-contaminated water, and the spent sorbent could be well regenerated and reused at least 5 times. An integrated analysis indicated that such an outstanding PFAA sorption performance on PPy/BC composites could be mainly attributed to surface adsorption enhanced by electrostatic attractions (anion exchange interaction) with the traditional hydrophobic interaction and pore filling of less contribution, particularly for short-chain analogues. These results are expected to inform the design of BC with greater ability to remove PFAS from water and the new sorbent could help water facilities comply with PFAS regulations.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Polymers , Charcoal/chemistry , Pyrroles , Ecosystem , Water Pollutants, Chemical/chemistry , Water , Fluorocarbons/analysis , Oxidants
16.
Environ Sci Technol ; 57(34): 12794-12805, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37579047

ABSTRACT

Plastic recycling and reprocessing activities may release organophosphate ester (OPE) flame retardants and plasticizers into the surrounding environment. However, the relevant contamination profiles and impacts remain not well studied. This study investigated the occurrence of 28 OPEs and their metabolites (mOPEs) in rainfall runoffs and agricultural soils around one of the largest plastic recycling industrial parks in North China and identified novel organophosphorus compounds (NOPs) using high-resolution mass spectrometry-based nontarget analysis. Twenty and twenty-seven OPEs were detected in runoff water and soil samples, with total concentrations of 86.0-2491 ng/L and 2.53-199 ng/g dw, respectively. Thirteen NOPs were identified, of which eight were reported in the environment for the first time, including a chlorine-containing OPE, an organophosphorus heterocycle, a phosphite, three novel OPE metabolites, and two oligomers. Triphenylphosphine oxide and diphenylphosphinic acid occurred ubiquitously in runoffs and soils, with concentrations up to 390 ng/L and 40.2 ng/g dw, respectively. The downwind areas of the industrial park showed elevated levels of OPEs and NOPs. The contribution of hydroxylated mOPEs was higher in soils than in runoffs. These findings suggest that plastic recycling and reprocessing activities are significant sources of OPEs and NOPs and that biotransformation may further increase the ecological and human exposure risk.


Subject(s)
Flame Retardants , Plasticizers , Humans , Plastics , Organophosphorus Compounds/analysis , Flame Retardants/analysis , Soil , Organophosphates/analysis , China , Esters/analysis , Environmental Monitoring
17.
Environ Sci Pollut Res Int ; 30(43): 98377-98388, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37608167

ABSTRACT

This study was designed to assess the distribution of organochlorines (OCs) in fish species, their spatio-temporal variations, bioaccumulation potential, and associated human health risks via dietary intake. The levels of twenty-three organochlorine pesticides (OCPs) and thirty-five polychlorinated biphenyls (PCBs) were analyzed in six fish species collected from the riverine ecosystem of Punjab Province, Pakistan. The results indicated that the mean levels of Σ23OCPs were 74.1 ng/g ww and 184 ng/g ww, and for Σ35PCBs the levels were 38.8 ng/g ww and 74.8 ng/g ww in herbivorous and carnivorous fish species, respectively. The most abundant contaminants in all fish species were DDTs (65%) and HCHs (14%) among OCPs and heavier PCB congeners (62%) among PCBs. As for dioxin-like PCBs, the WHO toxic equivalency values (ng TEQ/g ww) were in the range of 0.21 (Cyprinus Carpio) to 2.38 (Rita Rita), exceeding the maximum allowable limit of 0.004 ng TEQ/g, ww by the European Commission. Spatio-temporal analysis indicated relatively higher OC levels in winter season with elevated concentrations in fish samples from industrial zone. The bioconcentration factor (L/kg) values ranged from 723 to 2773 for PCBs and 315 to 923 for OCPs in all fish species, with higher levels were reported in carnivorous species. The human health risk assessment at both 50th and 95th percentiles revealed the absence of any significant non-carcinogenic risk as calculated HR was less than 1. However, the critical carcinogenic risk was found to be associated for most of the contaminants, signifying the dietary exposure to OCPs and PCBs might pose the public health concern.


Subject(s)
Carps , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Animals , Humans , Bioaccumulation , Pakistan , Ecosystem , Carcinogens , Carcinogenesis , Risk Assessment
18.
Environ Int ; 178: 108105, 2023 08.
Article in English | MEDLINE | ID: mdl-37517176

ABSTRACT

Cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are prominent soil contaminants found in industrial sites, and their combined effects on plants are not yet fully understood. To investigate the mechanisms underlying the co-exposure of Cd and PAHs and identify key biomarkers for their co-effects, an integrated analysis of metabolomics, transcriptomics, and proteomics was conducted on ryegrass leaves cultivated in soil. In nontarget metabolomics analysis, nine differentially expressed metabolites that were specifically induced by the compound exposure were identified. When combined with the analysis of differentially expressed genes and proteins, it was determined that the major pathways involved in the response to the co-stress of Cd and PAHs were linoleic acid metabolism and phenylpropanoid biosynthesis. The upregulation of 12,13-dihydroxy-9Z-octadecenoic acid and the downregulation of sinapyl alcohol were identified as typical biomarkers, respectively. Compared to scenarios of single exposures, the compound exposure to Cd and PAHs disrupted the oxidation of linoleic acid, leading to alterations in the profiles of linoleate metabolites. Additionally, it intensified hydroxylation, carboxylation, and methylation processes, and interfered with reactions involving coenzyme A, thus inhibiting lignin production. As a result, oxidative stress was elevated, and the cell wall defense system in ryegrass was weakened. The findings of this study highlight the ecological risks associated with unique biological responses in plants co-exposed to Cd and PAHs in polluted soils.


Subject(s)
Lolium , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Cadmium/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Lolium/metabolism , Linoleic Acid/metabolism , Linoleic Acid/pharmacology , Proteomics , Transcriptome , Biodegradation, Environmental , Soil , Metabolomics , Biomarkers/metabolism , Soil Pollutants/analysis
19.
J Hazard Mater ; 457: 131780, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37290352

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have received increasing scientific and regulatory attention due to their global distribution and health hazards. However, little is known about the PFAS composition of fluorinated products commercially available in China. In this study, a sensitive and robust analytical method was proposed for the comprehensive characterization of PFAS in aqueous film-forming foam and fluorocarbon surfactants in the domestic market based on liquid chromatography-high resolution mass spectrometry in full scan acquisition mode followed by parallel reaction monitoring mode. Consequently, a total of 102 PFAS from 59 classes were elucidated, of which 35 classes are reported for the first time, including 27 classes of anionic, seven classes of zwitterionic, and one class of cationic PFAS. The anionic-type products are mainly C6 fluorotelomerization-based (FT-based) PFAS. Perfluorooctanoic acid and perfluorooctane sulfonate are negligible, while some known electrochemical fluorination-based long-chain precursors in zwitterionic products are worthy of concern because of their high abundance and potential degradation. New precursors detected in zwitterionic products are FT-based PFAS, for example, 6:2 FTSAPr-AHOE and 6:2 FTSAPr-diMeAmPrC. The structural elucidation of PFAS in commercial products facilitates a better assessment of human exposure and environmental release.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Chromatography, Liquid , Water/analysis , China
20.
Chemosphere ; 337: 139237, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37331665

ABSTRACT

Organophosphate flame retardants (OPFRs) are extensively used as flame retardants and plasticizers, but their endocrine disrupting potentials have raised concerns. However, the impacts of OPFR exposures on reproductive and thyroid hormones in females remains unclear. In this study, serum concentrations of OPFRs were investigated, and levels of reproductive and thyroid hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, anti-Müllerian hormone, prolactin (PRL), testosterone (T), and thyroid stimulating hormone, were analyzed in childbearing-age females undergoing in-vitro fertilization treatment from Tianjin, a coastal city in China (n = 319). Tris (2-chloroethyl) phosphate (TCEP) was the predominant OPFR, with a median concentration of 0.33 ng/mL and a detection frequency of 96.6%. In the whole population, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP) were positively associated with T (p < 0.05), while triethyl phosphate (TEP) was negatively associated with LH (p < 0.05) and LH/FSH (p < 0.01). Particularly, TCIPP was negatively associated with PRL in the younger subgroup (age≤30, p < 0.05). Moreover, TCIPP was negatively associated with diagnostic antral follicle counting (AFC) in the mediation analysis by a dominating direct effect (p < 0.01). In conclusion, serum levels of OPFRs were significantly associated with reproductive and thyroid hormone levels and a risk of decreased ovarian reserve in childbearing-age females, with age and body mass index being significant influencing factors.


Subject(s)
Flame Retardants , Gonadal Hormones , Organophosphates , Plasticizers , Thyroid Hormones , Adult , Female , Humans , East Asian People , Flame Retardants/analysis , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood , Organophosphates/blood , Phosphates , Plasticizers/analysis , Thyroid Hormones/blood , Gonadal Hormones/blood , Pituitary Hormones, Anterior/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...