Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Adv Healthc Mater ; : e2400364, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221662

ABSTRACT

Central nervous system (CNS) injuries and neurodegenerative diseases have markedly poor prognoses and can result in permanent dysfunction due to the general inability of CNS neurons to regenerate. Differentiation of transplanted stem cells has emerged as a therapeutic avenue to regenerate tissue architecture in damaged areas. Electrical stimulation is a promising approach for directing the differentiation outcomes and pattern of outgrowth of transplanted stem cells, however traditional inorganic bio-electrodes can induce adverse effects such as inflammation. This study demonstrates the implementation of two organic thin films, a polymer/reduced graphene oxide nanocomposite (P(rGO)) and PEDOT:PSS, that have favorable properties for implementation as conductive materials for electrical stimulation, as well as an inorganic indium tin oxide (ITO) conductive film. Transcriptomic analysis reveals that electrical stimulation improves neuronal differentiation of SH-SY5Y cells on all three films, with the greatest effect for P(rGO). Unique material- and electrical stimuli-mediated effects are observed, associated with differentiation, cell-substrate adhesion, and translation. The work demonstrates that P(rGO) and PEDOT:PSS are highly promising organic materials for the development of biocompatible, conductive scaffolds that will enhance electrically-aided stem cell therapeutics for CNS injuries and neurodegenerative diseases.

3.
J Mater Chem B ; 12(34): 8366-8375, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39101841

ABSTRACT

With increasing antibiotic resistance and hospital acquired microbial infections, there has been a growing interest to explore alternate antimicrobial approaches. This is particularly challenging when aiming to protect surfaces over a large area to avoid contact mediated infection transmission. Quorum sensing (QS) inhibition has emerged as an alternate antimicrobial approach overcoming evolutionary stress driven resistance observed in antibiotic treatment. However, specific surface orientation requirements and limited work on delivery of small molecule QS inhibiting compounds have limited their widespread applicability certainly when it comes to coating large surfaces. Here, we report antimicrobial nanocomposite coatings overcoming the dependence on molecular orientation of QS inhibiting dihydropyrrol-2-ones (DHP) analogues and release small molecule analogues. In a systematic study, we developed poly(styrene-stat-n-butyl acrylate)/graphene oxide (GO)/DHP analogue nanocomposite antimicrobial coatings that can be easily applied to surfaces of any length scale and studied their efficacy against Staphylococcus aureus. The polymer nanocomposite was designed to undergo coating formation at ambient temperature. The antimicrobial coatings exhibited DHP dose dependent antimicrobial response both in the supernatant growth media with a ∼7-log10 reduction in cell growth and virtually a complete inhibition in cell adhesion on the surface in the best coating compared to controls. When compared, DHP-Br coatings outperformed other DHP analogues (-F and -Ph) both in limiting the cell growth in the media and cellular adhesion on the coating surface. This is the first example of nanocomposite coatings comprising QS inhibiting compounds, and their exceptional performance is expected to pave the way for further research in the field.


Subject(s)
Anti-Bacterial Agents , Graphite , Nanocomposites , Quorum Sensing , Staphylococcus aureus , Graphite/chemistry , Graphite/pharmacology , Quorum Sensing/drug effects , Nanocomposites/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Polymers/chemistry , Polymers/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Water/chemistry , Surface Properties , Particle Size
4.
J Am Chem Soc ; 146(36): 24966-24977, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39197103

ABSTRACT

Nitrate (NO3-) in wastewater poses a serious threat to human health and the ecological environment. The electrocatalytic NO3- reduction to ammonia (NH3) reaction (NO3-RR) emerges as a promising carbon-free energy route for enabling NO3- removal and sustainable NH3 synthesis. However, it remains a challenge to achieve high Faraday efficiencies at a wide potential window due to the complex multiple-electron reduction process. Herein, spatially separated dual-metal tandem electrocatalysts made of a nitrogen-doped ordered mesoporous carbon support with ultrasmall and high-content Cu nanoparticles encapsulated inside and large and low-content Ru nanoparticles dispersed on the external surface (denoted as Ru/Cu@NOMC) are designed. In electrocatalytic NO3-RR, the Cu sites can quickly convert NO3- to adsorbed NO2- (*NO2-), while the Ru sites can efficiently produce active hydrogen (*H) to enhance the kinetics of converting *NO2- to NH3 on the Cu sites. Due to the synergistic effect between the Cu and Ru sites, Ru/Cu@NOMC exhibits a maximum NH3 Faradaic efficiency (FENH3) of approximately 100% at -0.1 V vs reversible hydrogen electrode (RHE) and a high NH3 yield rate of 1267 mmol gcat-1 h-1 at -0.5 V vs RHE. Finite element method (FEM) simulation and electrochemical in situ Raman spectroscopy revealed that the mesoporous framework can enhance the intermediate concentration due to the in situ confinement effect. Thanks to the Cu-Ru synergistic effect and the mesopore confinement effect, a wide potential window of approximately 500 mV for FENH3 over 90% and a superior stability for NH3 production over 156 h can be achieved on the Ru/Cu@NOMC catalyst.

5.
ACS Appl Nano Mater ; 7(16): 18177-18188, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39206348

ABSTRACT

Three-dimensional (3D) bioprinting has made it possible to fabricate structures with intricate morphologies and architectures, which is considered difficult to do when using other conventional techniques like electrospinning. Although the 3D printing of thermoplastics has seen a huge boom in the past few years, it has been challenging to translate this technology to cell-based printing. A major limitation in bioprinting is the lack of inks that allow for the printing of 3D structures that meet the biological requirements of a specific organ or tissue. A bioink is a viscous polymer solution that cells are incorporated into before printing. Therefore, a bioink must have specific characteristics to ensure both good printability and biocompatibility. Despite the progress that has been made in bioprinting, achieving a balance between these two properties has been difficult. In this work, we developed a multimodal bioink that serves as both a cell carrier and a free radical scavenger for treating peripheral nerve injury. This bioink comprises poly(vinyl alcohol) (PVA) and cerium oxide nanoparticles (also called nanoceria (NC)) and was developed with a dual crosslinking method that utilizes citric acid and sodium hydroxide. By employing this dual crosslinking method, good printability of the bioink and shape fidelity of the bioprinted structure were achieved. Additionally, a cell viability study demonstrated that the cells remained compatible and viable even after they underwent the printing process. The combination of this PVA/NC bioink and the dual crosslinking method proved to be effective in enhancing printability and cell biocompatibility for extrusion-based bioprinting applications.

6.
ACS Appl Mater Interfaces ; 16(33): 44210-44224, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39129176

ABSTRACT

Anti-icing/deicing coatings with low energy consumption and superior flexibility could better fit application requirements in practical engineering. In this paper, an active-passive-integrated anti-icing/deicing coating based on carbon nanomaterials is prepared, which not only possesses various functions of electrothermal conversion, photothermal conversion, and superhydrophobicity but also shows a large deformability to accommodate curved surfaces. The coating consists of a sandwich-structured bottom part and top layer, the former of which includes a core conductive layer made of densely mixed carbon nanotubes (CNTs) and graphene and two polydimethylsiloxane (PDMS) wrapping layers, while the latter is a polymeric composite filled with TiN and SiO2 nanoparticles. Experimental studies show that, when the present coating works under an electric field alone, a 90% conversion of electric energy to thermal energy can be realized, only a 2 V voltage is enough to unfreeze the surface at minus 20 degrees within 400 s, and a slightly larger voltage of 2.5 V leads to a significant temperature increase of more than 100 °C within 200 s. Such required voltages are significantly smaller than their counterparts in existing electrothermal-based methods to achieve the same heating effects, which could be further diminished with the auxiliary action of sunlight illumination. A fast and complete deicing/defrosting can be consequently achieved with a small energy input. Furthermore, the water repellency function, electric property, and electrothermal conversion performance of the coating remain almost unchanged after either a large bending deformation or many bending cycles, thus ensuring an outstanding anti-icing/deicing effect on both flat and curved surfaces. All of the results demonstrate apparent advantages of the present coating including high efficiency, low energy consumption, all-weather adaptability, and excellent flexibility, which should be of great practical value for the freeze protection of differently shaped industrial equipment.

7.
J Mater Chem B ; 12(32): 7858-7869, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39021116

ABSTRACT

Nanozymes continue to attract considerable attention to minimise the dependence on expensive enzymes in bioassays, particularly in medical diagnostics. While there has been considerable effort directed towards developing different nanozymes, there has been limited progress in fabricating composite materials based on such nanozymes. One of the biggest gaps in the field is the control, tuneability, and on-demand catalytic response. Herein, a nanocomposite nanozymatic film that enables precise tuning of catalytic activity through stretching is demonstrated. In a systematic study, we developed poly(styrene-stat-n-butyl acrylate)/iron oxide-embedded porous silica nanoparticle (FeSiNP) nanocomposite films with controlled, highly tuneable, and on-demand activatable peroxidase-like activity. The polymer/FeSiNP nanocomposite was designed to undergo film formation at ambient temperature yielding a highly flexible and stretchable film, responsible for enabling precise control over the peroxidase-like activity. The fabricated nanocomposite films exhibited a prolonged FeSiNP dose-dependent catalytic response. Interestingly, the optimised composite films with 10 wt% FeSiNP exhibited a drastic change in the enzymatic activity upon stretching, which provides the nanocomposite films with an on-demand performance activation characteristic. This is the first report showing control over the nanozyme activity using a nanocomposite film, which is expected to pave the way for further research in the field leading to the development of system-embedded activatable sensors for diagnostic, food spoilage, and environmental applications.


Subject(s)
Nanocomposites , Peroxidase , Nanocomposites/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Polymers/chemistry , Silicon Dioxide/chemistry , Biomimetic Materials/chemistry , Surface Properties , Particle Size , Catalysis
8.
Front Neurol ; 15: 1367950, 2024.
Article in English | MEDLINE | ID: mdl-38585354

ABSTRACT

Background and objective: Futile recanalization (FR) is defined as patients with acute ischemic stroke (AIS) due to large vessel occlusion who still exhibits functional dependence although undergoing successful mechanical thrombectomy (MT). We aimed to develop and validate a simple nomogram for predicting the probability of FR after MT treatment in AIS patients. Methods: Clinical data of AIS patients in the Jrecan clinical trial in China from March 2018 to June 2019 were collected as the derivation set (n = 162). Meanwhile, clinical data of AIS patients who underwent MT in Baotou Central Hospital and Ningbo No.2 Hospital from 2019 to 2021 were collected as the validation set (n = 170). Multivariate logistic regression analysis was performed for all variables that had p < 0.2 in the univariate analysis in the derivation set. The independent risk factors of FR were further screened out and a nomogram was constructed. The performance of the nomogram was analyzed in the derivation and validation set using C-index, calibration plots, and decision curves. Results: No significant difference in FR rate was detected between the derivation set and the validation set [88/162 (54.32%) and 82/170 (48.23%), p = 0.267]. Multivariate logistic regression analysis showed that age ≥ 65 years old (OR = 2.096, 95%CI 1.024-4.289, p = 0.043), systolic blood pressure (SBP) ≥ 180 mmHg (OR = 5.624, 95%CI 1.141-27.717, p = 0.034), onset to recanalization time (OTR) ≥ 453 min (OR = 2.759, 95%CI 1.323-5.754, p = 0.007), 24 h intracerebral hemorrhage (ICH; OR = 4.029, 95%CI 1.844 ~ 8.803, p < 0.001) were independent risk factors for FR. The C-index of the nomogram of the derivation set and the verification set were 0.739 (95%CI 0.662~0.816) and 0.703 (95%CI 0.621~0.785), respectively. Conclusion: The nomogram composed of age, SBP, OTR, and 24 h ICH can effectively predict the probability of FR after MT in AIS patients.

9.
Allergy ; 79(5): 1230-1241, 2024 05.
Article in English | MEDLINE | ID: mdl-38403941

ABSTRACT

BACKGROUND: Identifying predictive biomarkers for allergen immunotherapy response is crucial for enhancing clinical efficacy. This study aims to identify such biomarkers in patients with allergic rhinitis (AR) undergoing subcutaneous immunotherapy (SCIT) for house dust mite allergy. METHODS: The Tongji (discovery) cohort comprised 72 AR patients who completed 1-year SCIT follow-up. Circulating T and B cell subsets were characterized using multiplexed flow cytometry before SCIT. Serum immunoglobulin levels and combined symptom and medication score (CSMS) were assessed before and after 12-month SCIT. Responders, exhibiting ≥30% CSMS improvement, were identified. The random forest algorithm and logistic regression analysis were used to select biomarkers and establish predictive models for SCIT efficacy in the Tongji cohort, which was validated in another Wisco cohort with 43 AR patients. RESULTS: Positive SCIT response correlated with higher baseline CSMS, allergen-specific IgE (sIgE)/total IgE (tIgE) ratio, and frequencies of Type 2 helper T cells, Type 2 follicular helper T (TFH2) cells, and CD23+ nonswitched memory B (BNSM) and switched memory B (BSM) cells, as well as lower follicular regulatory T (TFR) cell frequency and TFR/TFH2 cell ratio. The random forest algorithm identified sIgE/tIgE ratio, TFR/TFH2 cell ratio, and BNSM frequency as the key biomarkers discriminating responders from nonresponders in the Tongji cohort. Logistic regression analysis confirmed the predictive value of a combination model, including sIgE/tIgE ratio, TFR/TFH2 cell ratio, and CD23+ BSM frequency (AUC = 0.899 in Tongji; validated AUC = 0.893 in Wisco). CONCLUSIONS: A T- and B-cell signature combination efficiently identified SCIT responders before treatment, enabling personalized approaches for AR patients.


Subject(s)
Biomarkers , Desensitization, Immunologic , Pyroglyphidae , Rhinitis, Allergic , Humans , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Male , Desensitization, Immunologic/methods , Animals , Female , Adult , Pyroglyphidae/immunology , Treatment Outcome , Immunoglobulin E/blood , Immunoglobulin E/immunology , Middle Aged , Young Adult , Allergens/immunology , Allergens/administration & dosage , Antigens, Dermatophagoides/immunology , Injections, Subcutaneous , Adolescent , Prognosis
10.
J Psychiatry Neurosci ; 49(1): E45-E58, 2024.
Article in English | MEDLINE | ID: mdl-38359932

ABSTRACT

BACKGROUND: Environmental modification of genetic information (epigenetics) is often invoked to explain interindividual differences in the phenotype of schizophrenia. In clinical practice, such variability is most prominent in the symptom profile and the treatment response. Epigenetic regulation of immune function is of particular interest, given the therapeutic relevance of this mechanism in schizophrenia. METHODS: We analyzed the DNA methylation data of immune-relevant genes in patients with schizophrenia whose disease duration was less than 3 years, with previous lifetime antipsychotic treatment of no more than 2 weeks total. RESULTS: A total of 441 patients met the inclusion criteria. Core symptoms were consistently associated with 206 methylation positions, many of which had previously been implicated in inflammatory responses. Of these, 24 methylation positions were located either in regulatory regions or near the CpG islands of 20 genes, including the SRC gene, which is a key player in glutamatergic signalling. These symptom-associated immune genes were enriched in neuronal development functions, such as neuronal migration and glutamatergic synapse. Compared with using only clinical information (including scores on the Positive and Negative Syndrome Scale), integrating methylation data into the model significantly improved the predictive ability (as indicated by area under the curve) for response to 8 weeks of antipsychotic treatment. LIMITATIONS: We focused on a small number of methylation probes (immune-centred search) and lacked nutritional data and direct brain-based measures. CONCLUSION: Epigenetic modifications of the immune system are associated with symptom severity at onset and subsequent treatment response in schizophrenia.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Epigenesis, Genetic , Schizophrenia/drug therapy , Schizophrenia/genetics , Antipsychotic Agents/therapeutic use , DNA Methylation , CpG Islands , Immune System
12.
J Allergy Clin Immunol ; 153(4): 1025-1039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072196

ABSTRACT

BACKGROUND: Ectopic lymphoid tissues (eLTs) and associated follicular helper T (TFH) cells contribute to local immunoglobulin hyperproduction in nasal polyps (NPs). Follicular regulatory T (TFR) cells in secondary lymphoid organs counteract TFH cells and suppress immunoglobulin production; however, the presence and function of TFR cells in eLTs in peripheral diseased tissues remain poorly understood. OBJECTIVE: We sought to investigate the presence, phenotype, and function of TFR cells in NPs. METHODS: The presence, abundance, and phenotype of TFR cells in NPs were examined using single-cell RNA sequencing, immunofluorescence staining, and flow cytometry. Sorted polyp and circulating T-cell subsets were cocultured with autologous circulating naïve B cells, and cytokine and immunoglobulin production were measured by ELISA. RESULTS: TFR cells were primarily localized within eLTs in NPs. TFR cell frequency and TFR cell/TFH cell ratio were decreased in NPs with eLTs compared with NPs without eLTs and control inferior turbinate tissues. TFR cells displayed an overlapping phenotype with TFH cells and FOXP3+ regulatory T cells in NPs. Polyp TFR cells had reduced CTLA-4 expression and decreased capacity to inhibit TFH cell-induced immunoglobulin production compared with their counterpart in blood and tonsils. Blocking CTLA-4 abolished the suppressive effect of TFR cells. Lower vitamin D receptor expression was observed on polyp TFR cells compared with TFR cells in blood and tonsils. Vitamin D treatment upregulated CTLA-4 expression on polyp TFR cells and restored their suppressive function in vitro. CONCLUSIONS: Polyp TFR cells in eLTs have decreased CLTA-4 and vitamin D receptor expression and impaired capacity to suppress TFH cell-induced immunoglobulin production, which can be reversed by vitamin D treatment in vitro.


Subject(s)
Nasal Polyps , Tertiary Lymphoid Structures , Humans , T-Lymphocytes, Regulatory/pathology , T-Lymphocytes, Helper-Inducer/pathology , CTLA-4 Antigen/metabolism , Receptors, Calcitriol/metabolism , Nasal Polyps/pathology , Tertiary Lymphoid Structures/pathology , Immunoglobulins/metabolism , Vitamin D/metabolism
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1028722

ABSTRACT

AIM To establish an HPLC method for the simultaneous content determination of gallic acid,protocatechuic acid,morroniside,loganin,sweroside,paeoniflorin,hypericin,astragalin,salvianolic acid B,salvianolic acid A,epimedin C and icariin in Bushen Huoxue Sanjie Capsules.METHODS The analysis was performed on a 30℃thermostatic Agilent 5 TC-C18 column(250 mm×4.6 mm,5 μm),with the mobile phase comprising of acetonitrile-0.1%phosphoric acid flowing at 1.0 mL/min in a gradient elution manner,and the detection wavelength was set at 240 nm.RESULTS Twelve constituents showed good linear relationships within their own ranges(r≥0.999 8),whose average recoveries were 97.11%-101.14%with the RSDs of 0.60%-2.65%.CONCLUSION This simple,accurate and reproducible method can be used for the quality control of Bushen Huoxue Sanjie Capsules.

14.
Int J Biol Macromol ; 259(Pt 1): 128932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143069

ABSTRACT

With the growing demand for extending the shelf-life of perishable goods such as fruits and vegetables, there is continued interest towards the development of edible coatings derived from natural sources. To avoid rapid dissolution, water insoluble polysaccharide such as chitosan has been widely explored. In this work, we developed robust hyaluronic acid-based edible polysaccharide-protein coatings by combining it (hyaluronic acid) with chitosan and gelatin to introduce additional antioxidant properties. This work is the first example of using hyaluronic acid in edible coatings for fruit preservation. The effect of developed edible composite coatings on the quality of coated strawberries was investigated over a 15 day storage period with 3-day examination intervals. The obtained results revealed hyaluronic acid dose-dependent improvement in intrinsic properties of coated strawberries including weight loss, pH, titratable acidity (TA) and total solids content (TSS). Furthermore, the inclusion of hyaluronic acid significantly enhanced the antioxidant properties of developed edible coatings as measured using total phenolic content, change in ascorbic acid content and DPPH assay prolonging the shelf-life of coated strawberries.


Subject(s)
Chitosan , Edible Films , Fragaria , Antioxidants/chemistry , Fragaria/chemistry , Food Preservation/methods , Hyaluronic Acid , Fruit/chemistry , Chitosan/chemistry , Polysaccharides/chemistry , Proteins/analysis
15.
Brain Behav ; 13(12): e3307, 2023 12.
Article in English | MEDLINE | ID: mdl-37934082

ABSTRACT

OBJECTIVE: Compared logistic regression (LR) with machine learning (ML) models, to predict the risk of ischemic stroke in an elderly population in China. METHODS: We applied 2208 records from the Rugao Longitudinal Ageing Study (RLAS) for ischemic stroke risk prediction assessment. Input variables included 103 phenotypes. For 3-year ischemic stroke risk prediction, we compared the discrimination and calibration of LR model and ML methods, where ML methods include Random Forest (RF), Gaussian kernel Support Vector Machines (SVM), Multilayer perceptron (MLP), K-Nearest Neighbors Algorithm (KNN), and Gradient Boosting Decision Tree (GBDT) to develop an ischemic stroke risk prediction model. RESULTS: Age, pulse, waist circumference, education level, ß2-microglobulin, homocysteine, cystatin C, folate, free triiodothyronine, platelet distribution width, QT interval, and QTc interval were significant induced predictors of ischemic stroke. For ischemic stroke prediction, the ML approach was able to tap more biochemical and ECG-related multidimensional phenotypic indicators compared to the LR model, which placed more importance on general demographic indicators. Compared to the LR model, SVM provided the best discrimination and calibration (C-index: 0.79 vs. 0.71, 11.27% improvement in model utility), with the best performance in both validation and test data. CONCLUSION: In a comparison of LR with five ML models, the accuracy of ischemic stroke prediction was higher by combining ML with multiple phenotypes. Combined with other studies based on elderly populations in China, ML techniques, especially SVM, have shown good long-term predictive performance, inspiring the potential value of ML use in clinical practice.


Subject(s)
Ischemic Stroke , Humans , Aged , Aging , Algorithms , China/epidemiology , Machine Learning
16.
Small ; : e2305268, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661582

ABSTRACT

Polymerization-induced microphase separation (PIMS) is a versatile technique for producing nanostructured materials. In previous PIMS studies, the predominant approach involved employing homopolymers as macromolecular chain transfer agents (macroCTAs) to mediate the formation of nanostructured materials. In this article, the use of AB diblock copolymers as macroCTAs to design PIMS systems for 3D printing of nanostructured materials is investigated. Specifically, the influence of diblock copolymer composition and block sequence on the resulting nanostructures, and their subsequent impact on bulk properties is systematically investigated. Through careful manipulation of the A/B block ratios, the morphology and size of the nanodomains are successfully controlled. Remarkably, the sequence of A and B blocks significantly affects the microphase separation process, resulting in distinct morphologies. The effect can be attributed to changes in the interaction parameters (χAB , χBC , χAC ) between the different block segments. Furthermore, the block sequence and composition exert profound influence on the thermomechanical, tensile, and swelling properties of 3D printed nanostructured materials. By leveraging this knowledge, it becomes possible to design advanced 3D printable materials with tailored properties, opening new avenues for material engineering.

17.
Curr Opin Allergy Clin Immunol ; 23(6): 507-513, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37712561

ABSTRACT

PURPOSE OF REVIEW: Emerging evidence indicating that the dysfunction of T follicular regulatory (T FR ) cells contributes to excessive immunoglobulin E (IgE) production and the development of allergic diseases. Conversely, allergen immunotherapy (AIT) modulates T FR cells abundance and function to promote immune tolerance. This review focus on the role of T FR cells in allergic diseases and AIT, with the objective of providing novel insights into the mechanisms underlying immune tolerance of AIT and proposing the potential targeting of T FR cells in the context of allergic diseases. RECENT FINDINGS: Numerous studies have consistently demonstrated that T FR cells play a pivotal role in the inhibition of class switch recombination to IgE in both humans and specific murine models. This suppression is attributed to the actions of neuritin and IL-10 secreted by T FR cells, which exert direct and indirect effects on B cells. In patients with allergic rhinitis, reduced frequencies of circulating or tonsillar T FR cells have been reported, along with impaired functionality in suppressing IgE production. AIT, whether administered subcutaneously or sublingually, reinstates the frequency and functionality of T FR cells in allergic rhinitis patients, accompanied by changes of the chromatin accessibility of T FR cells. The increase in T FR cell frequency following AIT is associated with the amelioration of clinical symptoms. SUMMARY: T FR cells exert an inhibitory effect on IgE production and demonstrate a correlation with the clinical efficacy of AIT in patients with allergic rhinitis, suggesting T FR cells hold promise as a therapeutic target for allergic diseases and potential biomarker for AIT.

18.
Adv Sci (Weinh) ; 10(32): e2304734, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37750431

ABSTRACT

To date, the restricted capability to fabricate ceramics with independently tailored nano- and macroscopic features has hindered their implementation in a wide range of crucial technological areas, including aeronautics, defense, and microelectronics. In this study, a novel approach that combines self- and digital assembly to create polymer-derived ceramics with highly controlled structures spanning from the nano- to macroscale is introduced. Polymerization-induced microphase separation of a resin during digital light processing generates materials with nanoscale morphologies, with the distinct phases consisting of either a preceramic precursor or a sacrificial polymer. By precisely controlling the molecular weight of the sacrificial polymer, the domain size of the resulting material phases can be finely tuned. Pyrolysis of the printed objects yields ceramics with complex macroscale geometries and nanoscale porosity, which display excellent thermal and oxidation resistance, and morphology-dependent thermal conduction properties. This method offers a valuable technological platform for the simplified fabrication of nanostructured ceramics with complex shapes.

19.
ACS Appl Mater Interfaces ; 15(36): 43026-43037, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37647497

ABSTRACT

Anti-icing/deicing has always been a focal issue in modern industries. A novel anti-icing/deicing material based on graphene foams (GF) is prepared in this paper, which integrates multiple functions, including electrothermal conversion, photothermal conversion, and superhydrophobicity. The GF sheet is used as a bottom layer bonded on the protected substrate, which is covered by a polymeric composite coating filled with TiN and SiO2 nanoparticles. Electric heating and light heating experiments are performed to study the anti-icing/deicing performances of such a GF-based material. It is found that, under the unique action of electric fields, a voltage of only 1 V is needed to increase the surface temperature from minus tens of degrees to the one above zero within 400 s, which is much lower than their previous counterparts of more than 10 V to achieve the same unfreezing effect. A slight increase of the applied voltage to 1.5 V can even result in a remarkable increase of the surface temperature from room temperature to more than 150 °C within 200 s, in contrast to existing electric heating techniques to attain peak temperatures of about 100 °C at the expense of tens of volts. Such performances enable the GF-based material to achieve an outstanding electrothermal energy conversion rate of more than 90%. Furthermore, with the help of sunlight illumination in addition to the electric power, not only can the critical voltage to prevent icing be reduced but also a much more rapid and adequate removal of ice or frost from the surface can be realized compared with the deicing/defrosting performance under either electric or light field alone. All of these results demonstrate the obvious advantages of the present method in superior energy utilization efficiency and universal applicability to dark and sunlight environments, which should be particularly useful for at-all-cost protection of key components in industrial equipment from icing.

20.
Materials (Basel) ; 16(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297134

ABSTRACT

Ammonia (NH3) is a highly important industrial chemical used as fuel and fertilizer. The industrial synthesis of NH3 relies heavily on the Haber-Bosch route, which accounts for roughly 1.2% of global annual CO2 emissions. As an alternative route, the electrosynthesis of NH3 from nitrate anion (NO3-) reduction (NO3-RR) has drawn increasing attention, since NO3-RR from wastewater to produce NH3 can not only recycle waste into treasure but also alleviate the adverse effects of excessive NO3- contamination in the environment. This review presents contemporary views on the state of the art in electrocatalytic NO3- reduction over Cu-based nanostructured materials, discusses the merits of electrocatalytic performance, and summarizes current advances in the exploration of this technology using different strategies for nanostructured-material modification. The electrocatalytic mechanism of nitrate reduction is also reviewed here, especially with regard to copper-based catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL