Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(19): 13467-13476, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709001

ABSTRACT

Electrostatic energy-storage ceramic capacitors are essential components of modern electrified power systems. However, improving their energy-storage density while maintaining high efficiency to facilitate cutting-edge miniaturized and integrated applications remains an ongoing challenge. Herein, we report a record-high energy-storage density of 20.3 J cm-3 together with a high efficiency of 89.3% achieved by constructing a relaxor ferroelectric state with strongly enhanced local polarization fluctuations. This is realized by incorporating highly polarizable, heterovalent, and large-sized Zn and Nb ions into a Bi0.5Na0.5TiO3-BaTiO3 ferroelectric matrix with very strong tetragonal distortion. Element-specific local structure analysis revealed that the foreign ions strengthen the magnitude of the unit-cell polarization vectors while simultaneously reducing their orientation anisotropy and forming strong fluctuations in both magnitude and orientation within 1-3 nm polar clusters. This leads to a particularly high polarization variation (ΔP) of 72 µC cm-2, low hysteresis, and a high effective polarization coefficient at a high breakdown strength of 80 kV mm-1. This work has surpassed the current energy density limit of 20 J cm-3 in bulk Pb-free ceramics and has demonstrated that controlling the local structure via the chemical composition design can open up new possibilities for exploring relaxors with high energy-storage performance.

2.
Adv Mater ; : e2402046, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639483

ABSTRACT

Magnetic refrigeration technology can achieve higher energy efficiency based on the magnetocaloric effect (MCE). However, the practical application of MCE materials is hindered by their poor mechanical properties, making them challenging to process into devices. Conventional strengthening strategies usually lead to a trade-off with refrigeration capacity reduction. Here, a novel design is presented to overcome this dilemma by forming dual-phase alloys through in situ precipitation of a tough magnetic refrigeration phase within an intermetallic compound with excellent MCE. In the alloy 87.5Gd-12.5Co, incorporating the interconnected tough phase Gd contributes to enhanced strength (≈505 MPa) with good ductility (≈9.2%). The strengthening phase Gd simultaneously exhibits excellent MCE, enabling the alloy to achieve a peak refrigeration capacity of 720 J kg-1. Moreover, the alloy shows low thermal expansion induced by the synergistic effect of the two phases. It is beneficial for maintaining structural stability during heat exchange in magnetic refrigeration. The coupling interaction between the two magnetic phases can broaden the refrigeration temperature range and reduce hysteresis. This study guides the development of new high-performance materials with an excellent combination of mechanical and magnetic refrigeration properties as needed for gas liquefaction and refrigerators.

3.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109256

ABSTRACT

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

4.
Article in English | MEDLINE | ID: mdl-38048596

ABSTRACT

An outstanding challenge for eco-friendly ferroelectric (FE) refrigeration is to achieve a large adiabatic temperature change within a broad temperature range originating from the electrocaloric (EC) effect, which is expected to be realized in antiferroelectric (AFE) materials owing to the large entropy change during electric field and thermally induced phase transition. In this work, a large EC response over a wide response temperature range can be achieved slightly above room temperature via designing the phase transition of NaNbO3. An irreversible to reversible AFE-FE phase transition on heating induced by the introduction of CaZrO3 into NaNbO3 plays a key role in the optimized electrocaloric refrigeration. Accordingly, accompanying the local structure transformation corresponding to the B-site ions, the transition temperature between the square polarization-electric field (P-E) hysteresis loop (the irreversible AFE-FE phase transition induced by the electric field) and the repeatable double P-E hysteresis loop (the electric field induced reversible AFE-FE phase transition) was tailored to around room temperature, in favor of extending large entropy change to the wide temperature range. This work provides an efficient approach to designing lead-free EC materials with excellent EC performance, promoting the advancement of environmentally friendly solid-state cooling technology.

5.
J Am Chem Soc ; 145(35): 19396-19404, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37606548

ABSTRACT

Designing Pb-free relaxors with both a high capacitive energy density (Wrec) and high storage efficiency (η) remains a remarkable challenge for cutting-edge pulsed power technologies. Local compositional heterogeneity is crucial for achieving complex polar structure in solid solution relaxors, but its role in optimizing energy storage properties is often overlooked. Here, we report that an exceptionally high Wrec of 15.2 J cm-3 along with an ultrahigh η of 91% can be achieved through designing local chemical clustering in Bi0.5Na0.5TiO3-BaTiO3-based relaxors. A three-dimensional atomistic model derived from neutron/X-ray total scattering combined with reverse Monte Carlo method reveals the presence of subnanometer scale clustering of Bi, Na, and Ba, which host differentiated polar displacements, and confirming the prediction by density functional theory calculations. This leads to a polar state with small polar clusters and strong length and direction fluctuations in unit-cell polar vectors, thus manifesting improved high-field polarizability, steadily reduced hysteresis, and high breakdown strength macroscopically. The favorable polar structure features also result in a unique field-increased η, excellent stability, and superior discharge capacity. Our work demonstrates that the hidden local chemical order exerts a significant impact on the polarization characteristic of relaxors, and can be exploited for accessing superior energy storage performance.

6.
J Am Chem Soc ; 145(21): 11764-11772, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37205832

ABSTRACT

Dielectric capacitors have captured substantial attention for advanced electrical and electronic systems. Developing dielectrics with high energy density and high storage efficiency is challenging owing to the high compositional diversity and the lack of general guidelines. Herein, we propose a map that captures the structural distortion (δ) and tolerance factor (t) of perovskites to design Pb-free relaxors with extremely high capacitive energy storage. Our map shows how to select ferroelectric with large δ and paraelectric components to form relaxors with a t value close to 1 and thus obtaining eliminated hysteresis and large polarization under a high electric breakdown. Taking the Bi0.5Na0.5TiO3-based solid solution as an example, we demonstrate that composition-driven predominant order-disorder characteristic of local atomic polar displacements endows the relaxor with a slushlike structure and strong local polar fluctuations at several nanoscale. This leads to a giant recoverable energy density of 13.6 J cm-3, along with an ultrahigh efficiency of 94%, which is far beyond the current performance boundary reported in Pb-free bulk ceramics. Our work provides a solution through rational chemical design for obtaining Pb-free relaxors with outstanding energy-storage properties.

7.
J Am Chem Soc ; 145(11): 6194-6202, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36892264

ABSTRACT

Chemical design of lead-free relaxors with simultaneously high energy density (Wrec) and high efficiency (η) for capacitive energy-storage has been a big challenge for advanced electronic systems. The current situation indicates that realizing such superior energy-storage properties requires highly complex chemical components. Herein, we demonstrate that, via local structure design, an ultrahigh Wrec of 10.1 J/cm3, concurrent with a high η of 90%, as well as excellent thermal and frequency stabilities can be achieved in a relaxor with a very simple chemical composition. By introducing 6s2 lone pair stereochemical active Bi into the classical BaTiO3 ferroelectric to generate a mismatch between A- and B-site polar displacements, a relaxor state with strong local polar fluctuations can be formed. Through advanced atomic-resolution displacement mapping and 3D reconstructing the nanoscale structure from neutron/X-ray total scattering, it is revealed that the localized Bi enhances the polar length largely at several perovskite unit cells and disrupts the long-range coherent Ti polar displacements, resulting in a slush-like structure with extremely small size polar clusters and strong local polar fluctuations. This favorable relaxor state exhibits substantially enhanced polarization, and minimized hysteresis at a high breakdown strength. This work offers a feasible avenue to chemically design new relaxors with a simple composition for high-performance capacitive energy-storage.

8.
Sci Adv ; 9(5): eade7078, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36735779

ABSTRACT

Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi0.5Na0.5TiO3 (BNT)-based ceramics. The incorporation of the hypothetical perovskite BaAlO2.5 with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain.

9.
Nat Commun ; 14(1): 1007, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823219

ABSTRACT

Relaxor ferroelectrics are known for outstanding piezoelectric properties, finding a broad range of applications in advanced electromechanical devices. Decoding the origins of the enhanced properties, however, have long been complicated by the heterogeneous local structures. Here, we employ the advanced big-box refinement method by fitting neutron-, X-ray-based total scattering, and X-ray absorption spectrum simultaneously, to extract local atomic polar displacements and construct 3D polar configurations in the classical relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3. Our results demonstrate that prevailing order-disorder character accompanied by the continuous rotation of local polar displacements commands the composition-driven global structure evolution. The omnidirectional local polar disordering appears as an indication of macroscopic relaxor characteristics. Combined with phase-field simulations, it demonstrates that the competing local polar order-disorder between different states with balanced local polar length and direction randomness leads to a flattening free-energy profile over a wide polar length, thus giving rise to high piezoelectricity. Our work clarifies that the critical structural feature required for high piezoelectricity is the competition states of local polar rather than relaxor.

SELECTION OF CITATIONS
SEARCH DETAIL
...