Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Environ Sci Pollut Res Int ; 31(31): 44415-44430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954338

ABSTRACT

Chemical oxidation coupled with microbial remediation has attracted widespread attention for the removal of polycyclic aromatic hydrocarbons (PAHs). Among them, the precise evaluation of the feasible oxidant concentration of PAH-contaminated soil is the key to achieving the goal of soil functional ecological remediation. In this study, phenanthrene (PHE) was used as the target pollutant, and Fe2+-activated persulphate (PS) was used to remediate four types of soils. Linear regression analysis identified the following important factors influencing remediation: PS dosage and soil PHE content for PHE degradation, Fe2+ dosage, hydrolysable nitrogen (HN), and available phosphorus for PS decomposition. A comprehensive model of "soil characteristics-oxidation conditions-remediation effect" with a high predictive accuracy was constructed. Based on model identification, Pseudomonas aeruginosa GZ7, which had high PAHs degrading ability after domestication, was further applied to coupling repair remediation. The results showed that the optimal PS dose was 0.75% (w/w). The response relationship between soil physical, chemical, and biological indicators at the intermediate interface and oxidation conditions was analysed. Coupled remediation effects were clarified using microbial diversity sequencing. The introduction of Pseudomonas aeruginosa GZ7 stimulated the relative abundance of Cohnella, Enterobacter, Paenibacillus, and Bacillus, which can promote material metabolism and energy transformation during remediation.


Subject(s)
Oxidation-Reduction , Phenanthrenes , Pseudomonas aeruginosa , Soil Pollutants , Soil , Phenanthrenes/metabolism , Soil/chemistry , Soil Microbiology , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Sulfates/chemistry
2.
Huan Jing Ke Xue ; 44(8): 4599-4610, 2023 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-37694653

ABSTRACT

A 120-day in situ remediation of oil-contaminated soil was carried out by using highly efficient oil-degrading bacteria. The effects of bio-enhanced remediation and changes in soil physicochemical properties and enzyme activities were investigated. Combined with metagenomic sequencing and bioinformatics analysis, the strengthening mechanism was revealed. The results showed that compared with the blank control group (Ctrl), the degradation rate of total petroleum hydrocarbons in the bioremediation group (Exp-BT) was significantly increased, reaching 81.23%. During enhanced bioremediation by highly efficient oil-degrading bacteria, the pH of the soil was stable, the oxidation capacity of the system was improved, and the electrical conductivity was in the range suitable for agricultural activities. Lipase and dehydrogenase maintained high activity during repair. In addition, the analysis of the initial contaminated soil (B0), the highly efficient oil-degrading bacteria obtained from domestication (GZ), and the soil samples after bioremediation (BT) in the obtained samples showed that, at the phylum level, the total proportion of Proteobacteria and Actinobacteria increased by 17.1%. At the genus level, the abundance of Nocardioides, Achromobacter, Gordonia, and Rhodococcus increased significantly. The species and function contribution analysis of COG and KEGG proved that the above bacterial genera had important contributions to the degradation of petroleum hydrocarbons. A high abundance of petroleum hydrocarbon-related metabolic enzymes and five petroleum hydrocarbon-related degradation genes was found in the soil after remediation:alkM, tamA, rubB, ladA, and alkB. The analysis showed that the introduction of the exogenous petroleum hydrocarbon-degrading bacteria group enhanced the metabolic activity of microorganism-related enzymes and the expression of corresponding functional genes.


Subject(s)
Actinobacteria , Petroleum , Bacteria/genetics , Proteobacteria , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL