Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Biol Med ; 134: 104488, 2021 07.
Article in English | MEDLINE | ID: mdl-34020132

ABSTRACT

Switching bipolar radiofrequency ablation (bRFA) is a cancer treatment technique that activates multiple pairs of electrodes alternately based on a predefined criterion. Various criteria can be used to trigger the switch, such as time (ablation duration) and tissue impedance. In a recent study on time-based switching bRFA, it was determined that a shorter switch interval could produce better treatment outcome than when a longer switch interval was used, which reduces tissue charring and roll-off induced cooling. In this study, it was hypothesized that a more efficacious bRFA treatment can be attained by employing impedance-based switching. This is because ablation per pair can be maximized since there will be no interruption to RF energy delivery until roll-off occurs. This was investigated using a two-compartment 3D computational model. Results showed that impedance-based switching bRFA outperformed time-based switching when the switch interval of the latter is 100 s or higher. When compared to the time-based switching with switch interval of 50 s, the impedance-based model is inferior. It remains to be investigated whether the impedance-based protocol is better than the time-based protocol for a switch interval of 50 s due to the inverse relationship between ablation and treatment efficacies. It was suggested that the choice of impedance-based or time-based switching could ultimately be patient-dependent.


Subject(s)
Catheter Ablation , Liver Neoplasms , Radiofrequency Ablation , Electric Impedance , Electrodes , Humans , Liver/surgery , Liver Neoplasms/surgery
2.
Comput Biol Med ; 131: 104273, 2021 04.
Article in English | MEDLINE | ID: mdl-33631495

ABSTRACT

Radiofrequency ablation (RFA) is a thermal ablative treatment method that is commonly used to treat liver cancer. However, the thermal coagulation zone generated using the conventional RFA system can only successfully treat tumours up to 3 cm in diameter. Switching bipolar RFA has been proposed as a way to increase the thermal coagulation zone. Presently, the understanding of the underlying thermal processes that takes place during switching bipolar RFA remains limited. Hence, the objective of this study is to provide a comprehensive understanding on the thermal ablative effects of time-based switching bipolar RFA on liver tissue. Five switch intervals, namely 50, 100, 150, 200 and 300 s were investigated using a two-compartment 3D finite element model. The study was performed using two pairs of RF electrodes in a four-probe configuration, where the electrodes were alternated based on their respective switch interval. The physics employed in the present study were verified against experimental data from the literature. Results obtained show that using a shorter switch interval can improve the homogeneity of temperature distribution within the tissue and increase the rate of temperature rise by delaying the occurrence of roll-off. The coagulation volume obtained was the largest using switch interval of 50 s, followed by 100, 150, 200 and 300 s. The present study demonstrated that the transient thermal response of switching bipolar RFA can be improved by using shorter switch intervals.


Subject(s)
Catheter Ablation , Liver Neoplasms , Radiofrequency Ablation , Electrodes , Humans , Liver/surgery , Liver Neoplasms/surgery , Needles
3.
Comput Methods Programs Biomed ; 176: 17-32, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31200904

ABSTRACT

BACKGROUND AND OBJECTIVES: Recently, there have been calls for RFA to be implemented in the bipolar mode for cancer treatment due to the benefits it offers over the monopolar mode. These include the ability to prevent skin burns at the grounding pad and to avoid tumour track seeding. The usage of bipolar RFA in clinical practice remains uncommon however, as not many research studies have been carried out on bipolar RFA. As such, there is still uncertainty in understanding the effects of the different RF probe configurations on the treatment outcome of RFA. This paper demonstrates that the electrode lengths have a strong influence on the mechanics of bipolar RFA. The information obtained here may lead to further optimization of the system for subsequent uses in the hospitals. METHODS: A 2D model in the axisymmetric coordinates was developed to simulate the electro-thermophysiological responses of the tissue during a single probe bipolar RFA. Two different probe configurations were considered, namely the configuration where the active electrode is longer than the ground and the configuration where the ground electrode is longer than the active. The mathematical model was first verified with an existing experimental study found in the literature. RESULTS: Results from the simulations showed that heating is confined only to the region around the shorter electrode, regardless of whether the shorter electrode is the active or the ground. Consequently, thermal coagulation also occurs in the region surrounding the shorter electrode. This opened up the possibility for a better customized treatment through the development of RF probes with adjustable electrode lengths. CONCLUSIONS: The electrode length was found to play a significant role on the outcome of single probe bipolar RFA. In particular, the length of the shorter electrode becomes the limiting factor that influences the mechanics of single probe bipolar RFA. Results from this study can be used to further develop and optimize bipolar RFA as an effective and reliable cancer treatment technique.


Subject(s)
Computer Simulation , Electrodes , Hot Temperature , Liver/radiation effects , Radiofrequency Ablation , Blood/radiation effects , Body Temperature , Cell Death , Electric Conductivity , Electrophysiology , Humans , Liver Neoplasms/radiotherapy , Perfusion
4.
Comput Biol Med ; 106: 12-23, 2019 03.
Article in English | MEDLINE | ID: mdl-30665137

ABSTRACT

Effects of different boundary conditions prescribed across the boundaries of radiofrequency ablation (RFA) models of liver cancer are investigated for the case where the tumour is at the liver boundary. Ground and Robin-type conditions (electrical field) and body temperature and thermal insulation (thermal field) conditions are examined. 3D models of the human liver based on publicly-available CT images of the liver are developed. An artificial tumour is placed inside the liver at the boundary. Simulations are carried out using the finite element method. The numerical results indicated that different electrical and thermal boundary conditions led to different predictions of the electrical potential, temperature and thermal coagulation distributions. Ground and body temperature conditions presented an unnatural physical conditions around the ablation site, which results in more intense Joule heating and excessive heat loss from the tissue. This led to thermal damage volumes that are smaller than the cases when the Robin type or the thermal insulation conditions are prescribed. The present study suggests that RFA simulations in the future must take into consideration the choice of the type of electrical and thermal boundary conditions to be prescribed in the case where the tumour is located near to the liver boundary.


Subject(s)
Computer Simulation , Liver Neoplasms , Liver/diagnostic imaging , Models, Biological , Radiofrequency Ablation , Tomography, X-Ray Computed , Female , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Male
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2887-2890, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946494

ABSTRACT

The commonly used radiofrequency ablation (RFA) technique for treating liver cancer is in the monopolar mode. This requires the insertion of the RF electrode directly into the tumor tissue, which increases the risks of tumor track seeding (TTS). One way to overcome TTS is by employing the bipolar RFA, implemented in the no-touch mode. In the no-touch mode, two RF electrodes are inserted into the healthy tissue that surrounds the tumor. The distance between the electrodes and the tumor is defined as the no-touch gap. The ability of the no-touch bipolar RFA to overcome TTS has been demonstrated in laboratory studies; however, little is known about the thermo-physiological responses of the tissue during the ablation process of the no-touch procedure. This will be investigated numerically in the present study. A 3D model of the liver tissue is developed and the no-touch bipolar RFA implemented using a pair of RF electrodes is simulated using the finite element method. In particular, the effects of the no-touch gap on the treatment outcome of the RFA procedure are investigated. Results show that a larger no-touch gap may result incomplete tumor destruction due to the central region of the tumor not being directly affected by the Joule heating phenomenon that is more prominent around the electrodes. This suggests that an improperly selected no-touch gap may result in a reduced efficiency of the no-touch bipolar RFA.


Subject(s)
Catheter Ablation , Liver Neoplasms , Catheter Ablation/instrumentation , Electrodes , Humans , Liver , Liver Neoplasms/therapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL