Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Environ Pollut ; 349: 123940, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599268

ABSTRACT

A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.


Subject(s)
Agriculture , Environmental Monitoring , Pesticides , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Quebec , Pesticides/analysis , Pesticide Residues/analysis , Atrazine/analysis , Tandem Mass Spectrometry , Geologic Sediments/chemistry , Herbicides/analysis
2.
J Hazard Mater ; 469: 133955, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38457976

ABSTRACT

The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. In this work a comprehensive suspect screening workflow following liquid chromatography - high resolution mass spectrometry analysis was established utilising the open-source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification.


Subject(s)
Illicit Drugs , Water Pollutants, Chemical , Wastewater , Workflow , Psychotropic Drugs , China , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 912: 169333, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38097079

ABSTRACT

The occurrence of thirty-four flame retardants and plasticizers throughout treatment steps in a drinking water treatment plant (DWTP) was analyzed to assess removal efficiencies of filtration, ultraviolet (UV) treatment, and chlorination. Legacy compounds and replacements were included to compare their presence and persistence. Twenty-four-hour composite sampling, offset to account for retention time, was performed at a direct filtration DWTP in Montreal, Canada over a three-day period. Polybrominated diphenyl ethers (PBDEs), considered legacy flame retardants, were infrequently detected or at concentrations <1 ng/L. When overall removal efficiencies could be calculated, the removal of ∑7PBDEs was 49 and 94 % for days 2 and 3, respectively. No removal could be calculated on day 1 as PBDEs were only detected in finished drinking water. Higher brominated PBDEs BDE-183 and BDE-154 were only detected in raw water. Organophosphate esters (OPEs), considered replacement flame retardants, were frequently detected in all water samples. The total average concentration of ∑15OPes was 501 ng/L in raw water and 162 ng/L in drinking water, with an average removal efficiency of 67 %. OPEs were mainly removed during filtration, with TCIPP, TDCIPP, and TPHP showing statistically significant removal of 76, 84, and 95 %, respectively. The total average concentration of ∑8plasticizers was 2938 ng/L in raw water and 116 ng/L in drinking water. All plasticizers, except for metabolite MEHP, had significant removal from filtration, and the overall removal of plasticizers ranged from 20 % for DEP to 99 % for DEHP. Drinking water treatment decreases the concentration of these contaminants in drinking water but was less effective in removing flame retardants than plasticizers, as indicated by their higher number of PBDEs detected and higher concentrations of OPEs measured. To our knowledge, it is the first report of the removal of PBDEs, OPE metabolites and plasticizer replacements (DEHA, DIDA, DINCH, DINP) during drinking water treatment.


Subject(s)
Drinking Water , Flame Retardants , Water Purification , Plasticizers/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Organophosphates/analysis , Environmental Monitoring
4.
Bull Environ Contam Toxicol ; 111(6): 68, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940736

ABSTRACT

Tire wear particles (TWPs) are a major category of microplastic pollution produced by friction between tires and road surfaces. This non-exhaust particulate matter (PM) containing leachable toxic compounds is transported through the air and with stormwater runoff, leading to environmental pollution and human health concerns. In the present study, we collected airborne PM at varying distances (5, 15 and 30 m) along US Highway 278 in Oxford, Mississippi, USA, for ten consecutive days using Sigma-2 passive samplers. Particles (~ 1-80 µm) were passively collected directly into small (60 mL) wide-mouth separatory funnels placed inside the samplers. Particles were subsequently subjected to solvent extraction, and extracts were analyzed for TWP compounds by high resolution orbitrap mass spectrometry. This pilot study was focused solely on qualitative analyses to determine whether TWP compounds were present in this fraction of airborne PM. The abundance of airborne TWPs increased with proximity to the road with deposition rates (TWPs cm-2 day-1) of 23, 47, and 63 at 30 m, 15 m, and 5 m from the highway, respectively. Two common TWP compounds (6PPD-Q and 4-ADPA) were detected in all samples, except the field blank, at levels above their limits of detection, estimated at 2.90 and 1.14 ng L-1, respectively. Overall, this work suggests airborne TWPs may be a potential inhalation hazard, particularly for individuals and wildlife who spend extended periods outdoors along busy roadways. Research on the bioavailability of TWP compounds from inhaled TWPs is needed to address exposure risk.


Subject(s)
Air Pollutants , Benzoquinones , Hazardous Substances , Particulate Matter , Phenylenediamines , Plastics , Humans , Environmental Monitoring/methods , Mississippi , Particulate Matter/analysis , Particulate Matter/toxicity , Pilot Projects , Plastics/analysis , Plastics/toxicity , Phenylenediamines/analysis , Phenylenediamines/toxicity , Benzoquinones/analysis , Benzoquinones/toxicity , Air Pollutants/analysis , Air Pollutants/toxicity , Hazardous Substances/analysis , Hazardous Substances/toxicity , Inhalation Exposure
5.
Water Res X ; 19: 100179, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37143710

ABSTRACT

The proliferation of new psychoactive substances (NPS) over recent years has made their surveillance complex. The analysis of raw municipal influent wastewater can allow a broader insight into community consumption patterns of NPS. This study examines data from an international wastewater surveillance program that collected and analysed influent wastewater samples from up to 47 sites in 16 countries between 2019 and 2022. Influent wastewater samples were collected over the New Year period and analysed using validated liquid chromatography - mass spectrometry methods. Over the three years, a total of 18 NPS were found in at least one site. Synthetic cathinones were the most found class followed by phenethylamines and designer benzodiazepines. Furthermore, two ketamine analogues, one plant based NPS (mitragynine) and methiopropamine were also quantified across the three years. This work demonstrates that NPS are used across different continents and countries with the use of some more evident in particular regions. For example, mitragynine has highest mass loads in sites in the United States, while eutylone and 3-methylmethcathinone increased considerably in New Zealand and in several European countries, respectively. Moreover, 2F-deschloroketamine, an analogue of ketamine, has emerged more recently and could be quantified in several sites, including one in China, where it is considered as one of the drugs of most concern. Finally, some NPS were detected in specific regions during the initial sampling campaigns and spread to additional sites by the third campaign. Hence, wastewater surveillance can provide an insight into temporal and spatial trends of NPS use.

6.
Chemosphere ; 318: 137962, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36708776

ABSTRACT

A quantitative multiresidue analytical method for the simultaneous analysis of current-use agricultural pesticides in surface waters is reported. The method involves minimal sample manipulation and small sample collection volumes (for 1 mL and 5 mL injections) with online sample clean-up and analyte preconcentration on a hydrophilic-lipophilic balance (HLB) column. To our knowledge, this online approach with the use of an HLB column has not yet been reported for multiresidue pesticide analysis in surface waters. Chromatographic separations of isomeric pesticides were achieved through the sequential coupling of C8 and polar endcapped C18 analytical columns. High resolution accurate mass (HRAM) quadrupole Orbitrap spectrometry was performed in full scan mode followed by data-dependent MS/MS fragmentation (FS-ddMS2) with concurrent electrospray ionization in both positive and negative modes. The method was validated for thirty-one (31) diverse current-use pesticides and demonstrated strong linearity (R2 > 0.9912) and precision (% RSD <8.4%) with low quantitation limits (average LOQ of 41 ng L-1). The majority of target analytes experienced minimal matrix effects (<±20%) in fortified environmental water samples. When applied to surface water samples, the method detected fourteen of the target analytes, including twelve herbicides, one insecticide, and one fungicide. This method offers a fast, simple, and reliable approach for the quantitative analysis of diverse current-use pesticides in surface water samples within hours of sample collection in the field. The robust nature of the method may allow for potential application to other types of water and the targeted or untargeted screening of other emerging contaminants.


Subject(s)
Herbicides , Pesticides , Pesticides/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Water/chemistry , Herbicides/analysis
7.
Chemosphere ; 311(Pt 1): 137076, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332738

ABSTRACT

It is well established that persistent organic pollutants are transported long distances in the atmosphere and deposited into aquatic and terrestrial ecosystems in remote areas, including high altitude lakes. The objective of this research was to evaluate whether compounds of wastewater origin were present in four remote upland headwater lakes in Ireland that primarily receive loadings from atmospheric deposition. Using Polar Organic Chemical Integrative Samplers (POCIS) deployed in the lakes for 60 to 68 days, seven compounds were detected at levels that could be quantified but 25 of the target compounds were not detected. The detected compounds included the cannabinoid metabolite, tetrahydrocannabinol carboxylate (THC-COOH), codeine, acetaminophen (paracetamol), ibuprofen, and the artificial sweeteners, sucralose, and saccharin, which were all present at concentrations estimated to be < 125 ng/L. Caffeine was also present in the lakes at estimated concentrations between 213 and 1320 ng/L. Cocaine and tramadol were detected in POCIS deployed in some of the lakes, but at levels below the limits of quantitation. The highest concentrations of the target analytes were detected in two lakes located in the eastern part of Ireland. These data are consistent with regional atmospheric transport of these compounds originating from wastewater treatment plants in Ireland. However, contaminants from wastewater treatment plants in the United Kingdom may also be a source in these upland lakes that are located far from emissions of urban pollution.


Subject(s)
Lakes , Water Pollutants, Chemical , Lakes/chemistry , Wastewater/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Ireland , Organic Chemicals , Environmental Monitoring
8.
Sci Total Environ ; 856(Pt 1): 159076, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36179846

ABSTRACT

Tetracyclines are one of the antibiotics widely employed worldwide and frequently detected in surface waters because of incomplete removal from wastewater treatment. Various advanced oxidation processes have been investigated for tetracyclines degradation and their transformation products (TPs) have recently gained more attention. Studies on ozonation are however seldom for the degradation of oxytetracycline (OTC) and doxycycline (DTC). In the present study, a lower O3 inlet gas concentration (4.67 ± 0.13 mg/L), supplied at a flow rate of 0.27 L/min, was shown to be more effective at removing OTC than the same dose of ozone applied at higher inlet gas concentration (up to 6.29 mg/L) over a shorter time at the same flow rate. The use of pCBA and t-BuOH indicated that ozone plays a more important role in the degradation of OTC than HO•. The DTC degradation was less efficient than for OTC, with 99 % removal requiring twice the amount of ozone. OTC had almost no inhibition of Vibrio fischeri, however, the inhibition ratio was increased to 37 % (5-min) and 46 % (15-min) within 1 min of ozonation. Contrastly, DTC had toxic effects on V. fischeri (inhibition rate5min of 84 %) and sustained toxicity in samples treated for up to 40-min. The observed toxicities after treatment could be explained by the identified TPs (26 TPs for OTC and 23 for DTC, some identified for the first time) and their quantitative structure-activity relationship analysis data. Several TPs showed toxic or extremely toxic predicted effects on fish, daphnid, and green algae, corresponding with the V. fischeri inhibition results. Among the possible degradation pathways, aromatic ring hydroxylation and ring-opening pathways could lead to the formation of TPs less harmful to the environment.


Subject(s)
Oxytetracycline , Ozone , Water Purification , Animals , Oxytetracycline/toxicity , Doxycycline , Water Purification/methods , Ozone/pharmacology , Aliivibrio fischeri , Anti-Bacterial Agents/toxicity
9.
Water Res ; 225: 119182, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36215836

ABSTRACT

Consumption of amphetamine and methamphetamine, two common illicit drugs, has been monitored by wastewater-based epidemiology (WBE) in many countries over the past decade. There is potential for the estimated amount of amphetamine used to be skewed at locations where methamphetamine is also consumed, because amphetamine is also excreted to wastewater following methamphetamine consumption. The present study aims to review the available data in the literature to identify an average ratio of amphetamine/methamphetamine (AMP/METH) that is excreted to wastewater after methamphetamine consumption. This ratio could then be used to refine the estimation of amphetamine consumption in catchments where there is both amphetamine and methamphetamine use. Using data from more than 6000 wastewater samples from Australia where methamphetamine is the dominant illicit amphetamine-type substance on the market, we were able to subtract the contribution of legal sources of amphetamine contribution and obtain the median AMP/METH ratio in wastewater of 0.09. Using this value, the amphetamine derived from methamphetamine consumption can be calculated and subtracted from the total amphetamine mass loads in wastewater samples. Without considering the contribution of amphetamine from methamphetamine use, selected European catchments with comparable consumption of amphetamine and methamphetamine showed up to 83% overestimation of amphetamine use. For catchments with AMP/METH ratio greater than 1.00, the impact of amphetamine from methamphetamine would be negligible; for catchments with AMP/METH ratio in the range of 0.04-0.19, it will be difficult to accurately estimate amphetamine consumption.


Subject(s)
Illicit Drugs , Methamphetamine , Water Pollutants, Chemical , Amphetamine , Substance Abuse Detection , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 843: 157006, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35779716

ABSTRACT

This research evaluates photocatalytic ozonation for removing 5 PFAS (PFOA/PFHxS/PFBS/6:2 FTS/GenX) from water using a WO3/TiO2 catalyst under UVA-visible radiation. Four catalysts of varying WO3 content (0/1/3/5 wt%) were synthesized by sol-gel and characterized by XRD, TEM, STEM-EDS, HAADF-STEM, adsorption/desorption N2 isotherms, and DRS-UV-vis. 5 wt% WO3/TiO2 was the optimal composition based on physicochemical properties and photocatalytic activity tests with methylene blue. PFAS degradation showed that photocatalytic ozonation inefficiently degraded PFAS with WO3/TiO2 under UVA-visible light after 4 h (ΣPFAS removal 16 %, [range 4 %-26 %]). Photocatalysis had comparable removal to photocatalytic ozonation, photolysis and ozone photolysis showed lower removal, and ozonation had no effect. Microtox analysis showed the initial acute toxicity was no longer detectable after photocatalysis and photocatalytic ozonation treatment. Low PFAS removals under tested conditions require that future work evaluate different catalysts or treatment conditions, while disparities between tested PFAS removals demonstrate the need to evaluate multiple compounds. ENVIRONMENTAL IMPLICATION: The research presented in this manuscript involves the preparation and characterization of WO3/TiO2 catalysts used, for the first time, to remove multiple PFAS in water via photocatalytic ozonation. This manuscript supports the development of a catalytic process for the elimination of hard to degrade environmental pollutants, provides new knowledge on aspects of photocatalytic processes, and provides insights on environmental pollution abatement.


Subject(s)
Fluorocarbons , Ozone , Water Pollutants, Chemical , Catalysis , Fluorocarbons/analysis , Light , Ozone/analysis , Titanium/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 840: 156581, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35697219

ABSTRACT

The occurrence of thirty-nine contaminants including plasticizers, bisphenols, and flame retardants in potable water from Montreal and South Africa was analyzed to determine their presence and concentrations in different water sources. In Montreal, five bottled water (BW) brands and three drinking water treatment plants (DWTP) were included. In South Africa, water was sampled from one urban DWTP located in Pretoria, Gauteng, and one rural DWTP located in Vhembe, along with water from the same rural DWTP which had been stored in small and large plastic containers. A combination of legacy compounds, typically with proven toxic effects, and replacement compounds was investigated. Bisphenols, Dechlorane-602, Dechlorane-603, and s-dechlorane plus (s-DP) were not detected in any water samples, and a-dechlorane plus (a-DP) was only detected in one sample from Pretoria at a concentration of 1.09 ng/L. Lower brominated polybrominated diphenyl ethers (PBDE)s were detected more frequently than higher brominated PBDEs, always at low concentrations of <2 ng/L, and total PBDE levels were statistically higher in South Africa than in Montreal. Replacement flame retardants, organophosphate esters (OPEs), were detected at statistically higher concentrations in Montreal's BW (68.56 ng/L), drinking water (DW) (421.45 ng/L) and Vhembe (198.33 ng/L) than legacy PBDEs. Total OPE concentrations did not demonstrate any geographical trend; however, levels were statistically higher in Montreal's DW than Montreal's BW. Plasticizers were frequently detected in all samples, with legacy compounds DEHP, DBP, and replacement DINCH being detected in 100 % of samples with average concentrations ranging from 6.89 ng/L for DEHP in Pretoria to 175.04 ng/L for DINCH in Montreal's DW. Total plasticizer concentrations were higher in Montreal than in South Africa. The replacement plasticizers (DINCH, DINP, DIDA, and DEHA) were detected at similar frequencies and concentrations as legacy plasticizers (DEHP, DEP, DBP, MEHP). For the compounds reported in earlier studies, the concentrations detected in the present study were similar to other locations. These compounds are not currently regulated in drinking water but their frequent detection, especially OPEs and plasticizers, and the presence of replacement compounds at similar or higher levels than their legacy compounds demonstrate the importance of further investigating the prevalence and the ecological or human health effects of these compounds.


Subject(s)
Diethylhexyl Phthalate , Drinking Water , Flame Retardants , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Humans , Organophosphates/analysis , Plasticizers , South Africa
12.
Food Chem ; 385: 132675, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35305432

ABSTRACT

A sensitive method based on ultrasound-assisted liquid extraction coupled with liquid chromatography was applied to screen 18 plastic-related contaminants in 168 food composites (namely fish fillets, chicken breast, canned tuna, leafy vegetables, bread and butter) collected in Montreal (Canada), Pretoria and Vhembe (South Africa). Bisphenol A (BPA), bisphenol S (BPS) and seven plasticizers (di-n-butyl phthalate (DBP), diethyl phthalate (DEP), (2-ethylhexyl) phthalate (DEHP), di-(2-ethylhexyl) adipate (DEHA), di-isononyl phthalate (DINP), di-(isononyl)-cyclohexane-1,2-dicarboxylate (DINCH)) were detected in different foods from both countries. DBP and DEP were the most frequently detected contaminants in food collected in Montreal (75% for both) and DINP was the most frequently detected contaminant in food from South Africa (67%). DEHA concentration in packaged fish were significantly higher than the values for non-packaged fish (p < 0.01) suggesting that the packaging film can be one source of DEHA in fish.


Subject(s)
Phthalic Acids , Plasticizers , Animals , Benzhydryl Compounds/analysis , Phenols , Phthalic Acids/analysis , Plasticizers/analysis , Plastics , South Africa
13.
Arch Environ Contam Toxicol ; 82(2): 171-179, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34347118

ABSTRACT

Prompted by a recent report that 6PPD-quinone (6PPD-q), a by-product of a common tire manufacturing additive that is present in road runoff, is toxic to coho salmon (Oncorhynchus kisutch), extracts of water samples collected from an urban river were re-analyzed to determine if this compound was present in stormwater-influenced flows. In addition, extracts were analyzed for 1,3-diphenylguanidine (DPG), which is also used in tire manufacturing. Samples were originally collected in the fall of 2019 and winter of 2020 in the Greater Toronto Area of Canada from the Don River, a highly urbanized watershed in close proximity to several major multi-lane highways. These target compounds were analyzed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection with parallel reaction monitoring. Both 6PPD-q and DPG were detected above limits of quantification (i.e., 0.0098 µg/L) in all extracts. Maximum concentrations for 6PPD-quinone of 2.30 ± 0.05 µg/L observed in the river during storm events exceeded the LC50 for this compound for coho salmon (i.e., > 0.8 µg/L). In composite samples collected at intervals throughout one rain event, both compounds reached peak concentrations a few hours after initiation of the event (i.e., 0.52 µg/L for DPG and 2.85 µg/L for 6PPD-q), but the concentrations of 6PPD-q remained elevated above 2 µg/L for over 10-h in the middle of the event. Estimates of cumulative loads of these compounds in composite samples indicated that kg amounts of these compounds entered the Don River during each hydrological event, and the loads were proportional to the amounts of precipitation. This study contributes to the growing literature indicating that potentially toxic tire-wear compounds are present at elevated levels and are transported via road runoff into urban surface waters during rain events.


Subject(s)
Oncorhynchus kisutch , Animals , Environmental Monitoring , Guanidines , Rain , Rivers
14.
Arch Environ Contam Toxicol ; 82(1): 21-36, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34748030

ABSTRACT

Bioanalytical tools, namely in vitro bioassays, can be employed in tandem with chemical analyses to assess the efficacy of wastewater treatment and the potential for adverse effects from the discharges of wastewater into receiving waters. In the present study, samples of untreated wastewater (i.e., influent) and treated wastewater (i.e., effluent) were collected from two wastewater treatment plants and a wastewater treatment lagoon to investigate potential differences in treatment performance. In addition, grab samples of surface water were collected downstream of the lagoon discharge to evaluate the water quality in the receiving stream. After solid-phase extraction (SPE) using ion exchange columns for basic/neutral and acidic compounds, respectively, the extracts were analyzed for a suite of 16 indicator compounds. The two SPE extracts were combined for analysis of biological responses in four in vitro cell-based bioassays. The concentrations of several indicator compounds, including the estrogens, 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2), were below the limits of detection. However, androstenedione and estrone were detected in several influent samples. The concentrations of these steroid hormones and some of the other indicator compounds declined during treatment, but acesulfame K, carbamazepine, trimethoprim and DEET persisted in the effluent. The MTS-CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) indicated that cell viability was not affected by exposure to the extracts. The Qiagen Nuclear Receptors 10-Pathway Reporter Array indicated that several cellular pathways were upregulated, with the greatest upregulation observed with the estrogen receptor (i.e., induction ratios of 12 to 47) and the liver X receptor (i.e., induction ratios of 10 to 45). The ERα CALUX assay indicated that estrogenic activity was lower in effluents compared to influents, but the expected improved removal of estrogenic activity during nitrification was not observed. The results of the Nrf2 Luciferase Luminescence Assay indicated a lower oxidative stress in the effluent samples, except for the lagoon. Overall, the present study further demonstrates that bioassays provide complementary information to chemical analyses and offer a way to assess treatment performance, even when target contaminants are not detected. There are thus advantages to using a combination of chemical analyses and in vitro bioassays to monitor the treatment efficiency of wastewater treatment plants and to predict the potential impacts of wastewater discharges into receiving waters.


Subject(s)
Water Pollutants, Chemical , Water Purification , Estrogens/toxicity , Estrone/analysis , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
Environ Res ; 205: 112483, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34863984

ABSTRACT

Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biological Assay , Endocrine Disruptors/toxicity , Estrogens , Mammals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Resources
16.
Sci Total Environ ; 804: 150067, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34509830

ABSTRACT

Pharmaceuticals and personal care products, antibiotics, estrogens, and antiandrogens are found widely in aquatic environments. Monitoring studies by sampling surface water and effluents of wastewater treatment plants (WWTPs) have been conducted recently to monitor antiandrogens, which, along with estrogens, cause endocrine disruption. However, few studies have investigated antiandrogenic activity (AA) combined with a chemical analyses of emerging antiandrogens. Therefore, we analyzed the presence and persistence of 12 types of antiandrogens, atrazine, and carbamazepine using grab sampling and polar organic chemical integrative sampler (POCIS) along a river affected by WWTP discharges. Water and sediment samples were collected from the WWTP effluent (WW), as well as upstream (US) and downstream (DS) of the WWTP. We detected only tebuconazole, triclosan, propiconazole, and fluconazole during the two sampling campaigns in 2016 and 2017. Grab sampling of the site WW detected tebuconazole (7-77 ng/L), propiconazole (5-47 ng/L), and fluconazole (6-45 ng/L). However, the concentrations in the river water were below the detection limits. Nevertheless, fluconazole and triclosan were detected by POCIS in the site WW (45.7 and 26.8 ng/L, respectively) and all river samples ranges of 0.3-9.3 and 2.4-3.7, respectively. This detection was attributed to the limit of quantification of POCIS being lower than that of grab sampling. Nilutamide and triclosan were detected in the river sediment, suggesting that their concentrations in the water column were at least partly attenuated through sediment sorption. We also observed AA by analyzing POCIS extracts with the yeast androgen screen assay. The highest AA was found in the site WW and it was still observable several kilometers downstream of the point of discharge despite decreasing. Therefore, the WWTP effluent was most likely contributor to the persistent AA in the river.


Subject(s)
Wastewater , Water Pollutants, Chemical , Androgen Antagonists , Environmental Monitoring , Rivers , Wastewater/analysis , Water Pollutants, Chemical/analysis
17.
Mol Ecol ; 30(19): 4771-4788, 2021 10.
Article in English | MEDLINE | ID: mdl-34324752

ABSTRACT

Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 µg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.


Subject(s)
Aquatic Organisms , Fresh Water , Bacteria/genetics , Biodiversity , RNA, Ribosomal, 16S/genetics
18.
Ecol Appl ; 31(7): e02423, 2021 10.
Article in English | MEDLINE | ID: mdl-34288209

ABSTRACT

Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.


Subject(s)
Water Pollutants, Chemical , Zooplankton , Agrochemicals , Animals , Biomass , Ecosystem , Fresh Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Sci Total Environ ; 787: 147645, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34000552

ABSTRACT

The widespread deterioration of our water systems requires new wastewater treatment technologies to ensure environmental protection. Conventional wastewater treatments were not designed for, and are therefore ineffective, at removing contaminants of emerging concern (CECs) such as pharmaceuticals, personal care products, pesticides, and industrial chemicals. Furthermore, treatment processes capable of breaking down CECs may produce toxic transformation products more harmful than the parent chemicals. Heterogeneous photocatalytic ozonation provides a promising option with high degradation and mineralization of organic compounds. The aim of the present paper is to review ecotoxicity reduction in water treated by heterogeneous photocatalytic ozonation as a measure of process viability. The discussion investigates changes in toxicity based on a variety of toxicity tests performed to evaluate potential effects on ecosystems, the types of catalysts and radiation sources used, the nature of the target contaminants, and the type of water matrix treated. Acute toxicity testing, TiO2 catalysts, and mercury-vapour lamps including blacklights were dominant in the reviewed studies, investigated in 86%, 84% and 79% of the papers, respectively. Pharmaceuticals were the main group of chemicals treated and the water matrices used were predominantly pure water and secondary effluent. Overall, the findings of these studies provide evidence that photocatalytic ozonation is an efficient process to remove persistent organic compounds while, most of the time, not increasing the toxicity of the effluent (as reported by 86% of the studies). Due to the wide variation in experimental set-ups, no clear correlation between reaction conditions and toxicity was determined, however, V. fischeri acute toxicity assays and chronic/sublethal tests appeared most sensitive to transformation products. Future studies need to a) incorporate multiple toxicity tests to produce a more reliable and inclusive ecotoxicity assessment of treated effluent and b) investigate immobilized catalysts and energy efficient radiation sources (i.e. solar and LEDs) for industrial applications.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Ecosystem , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
Arch Environ Contam Toxicol ; 80(4): 745-759, 2021 May.
Article in English | MEDLINE | ID: mdl-33856560

ABSTRACT

Gestagens are active ingredients in human and veterinary drugs with progestogenic activity. Two gestagens-progesterone (P4), and the synthetic P4 analogue, melengestrol acetate (MGA)-are approved for use in beef cattle agriculture in North America. Both P4 and MGA have been measured in surface water receiving runoff from animal agricultural operations. This project aimed to assess the morphometric and molecular consequences of chronic exposures to P4, MGA, and their mixture during Western clawed frog metamorphosis. Chronic exposure (from embryo to metamorphosis) to MGA (1.7 µg/L) or P4 + MGA (0.22 µg/L P4 + 1.5 µg/L MGA) caused a considerable dysregulation of metamorphic timing, as evidenced by an inhibition of growth, narrower head, and lack of forelimb emergence in all animals. Molecular analysis revealed that chronic exposure to the mixture induced an additive upregulation of neurosteroid-related (GABAA receptor subunit α6 (gabra6) and steroid 5-alpha reductase 1 (srd5α1) gene expression in brain tissue. Chronic P4 exposure (0.26 µg/L P4) induced a significant upregulation of the expression hypothalamic-pituitary-gonadal (HPG)-related genes (ipgr, erα) in the gonadal mesonephros complex (GMC). Our data suggest that exposure to P4, MGA, and their mixture induces multiple endocrine responses and adverse effects in larval Western clawed frogs. This study helps to better our understanding of the consequences of chronic gestagen exposure and suggests that the implications and risk of high gestagen use in beef cattle feeding operations may extend to the aquatic environment.


Subject(s)
Melengestrol Acetate , Progestins , Animals , Cattle , Gene Expression , North America , Progesterone
SELECTION OF CITATIONS
SEARCH DETAIL
...