Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 813: 152423, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34942242

ABSTRACT

Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.


Subject(s)
Anthozoa , Acclimatization , Adaptation, Physiological , Animals , Anthozoa/genetics , Coral Reefs , Ecosystem , Genetic Variation , Temperature
2.
DNA Res ; 28(4)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34387305

ABSTRACT

The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.


Subject(s)
Biological Evolution , Genome , Phylogeny , Starfish/genetics , Animals , Genomics , Phylogeography , Sequence Analysis, DNA
3.
PLoS One ; 16(6): e0245316, 2021.
Article in English | MEDLINE | ID: mdl-34111145

ABSTRACT

Sulawesi, an island located in a biogeographical transition zone between Indomalaya and Australasia, is famous for its high levels of endemism. Ricefishes (family Adrianichthyidae) are an example of taxa that have uniquely diversified on this island. It was demonstrated that habitat fragmentation due to the Pliocene juxtaposition among tectonic subdivisions of this island was the primary factor that promoted their divergence; however, it is also equally probable that habitat fusions and resultant admixtures between phylogenetically distant species may have frequently occurred. Previous studies revealed that some individuals of Oryzias sarasinorum endemic to a tectonic lake in central Sulawesi have mitochondrial haplotypes that are similar to the haplotypes of O. eversi, which is a phylogenetically related but geologically distant (ca. 190 km apart) adrianichthyid endemic to a small fountain. In this study, we tested if this reflects ancient admixture of O. eversi and O. sarasinorum. Population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that O. eversi and O. sarasinorum are substantially reproductively isolated from each other. Comparison of demographic models revealed that the models assuming ancient admixture from O. eversi to O. sarasinorum was more supported than the models assuming no admixture; this supported the idea that the O. eversi-like mitochondrial haplotype in O. sarasinorum was introgressed from O. eversi. This study is the first to demonstrate ancient admixture of lacustrine or pond organisms in Sulawesi beyond 100 km. The complex geological history of this island enabled such island-wide admixture of lacustrine organisms, which usually experience limited migration.


Subject(s)
Fishes/genetics , Genetic Introgression , Mitochondria/genetics , Animals , Ecosystem , Indonesia , Islands , Phylogeny
4.
R Soc Open Sci ; 7(10): 191731, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33204436

ABSTRACT

Marine cave habitats in the Ryukyu Islands, Indo-West Pacific, are located at the northern edge of the distribution of many cave-dwelling species. At distribution margins, gene flow is often more restricted than that among core populations due to the smaller effective population size. Here, we used high-throughput sequencing technology to investigate the gene flow pattern among three sampling sites of a marine cave-dwelling species at the margin of its distribution range. We collected individuals of the barbouriid shrimp Parhippolyte misticia from three marine caves in the Ryukyu Islands and performed population genetic analyses by means of multiplexed inter-simple sequence repeat genotyping by sequencing. Based on 62 single-nucleotide polymorphism markers, no clear population structure or directional gene flow pattern was found among the three sites. These results were unexpected because previous studies of other stygobitic shrimps in this region did find significant population genetic structures and northward directional gene flow patterns. Together, these inconsistent findings imply that marine cave-dwelling species in the region have different mechanisms of larval dispersal. Future studies on larval ecology and the biotic and abiotic factors influencing gene flow patterns are needed to clarify the mechanisms underlying the population dynamics of marine cave-dwelling species.

5.
Microbiome ; 8(1): 123, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32831146

ABSTRACT

BACKGROUND: Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS: A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS: We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS: COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.


Subject(s)
Anthozoa , Bacteria/isolation & purification , Predatory Behavior , Starfish/microbiology , Starfish/physiology , Symbiosis , Animals , Bacteria/genetics , Coral Reefs , Indian Ocean , Male , Pacific Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Starfish/genetics
6.
Sci Rep ; 10(1): 10026, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572270

ABSTRACT

Birgus latro (coconut crab) is an edible crustacean that has experienced serious overharvesting throughout its whole habitat range; however, the negative effects of overharvesting on the genetic diversity within B. latro populations have not been elucidated. Here, we report sex ratio, body size, and genetic diversity in populations of B. latro in the Ryukyu Islands where large-male-biased overharvesting of B. latro has continued. In 2 of the study populations, the sex ratio was significantly skewed toward females, and in all of the study populations large males were rare, which we attributed to sex- and size-biased overharvesting. We found no differences in genetic diversity between small and large individuals, suggesting that genetic diversity, even among the large (i.e., old) individuals, may have had already been negatively affected by overharvesting. Continued monitoring of sex ratio, body size and genetic diversity are needed for effective management of the study populations.


Subject(s)
Brachyura/genetics , Genetic Variation/genetics , Animals , Body Size , Conservation of Natural Resources , Female , Genetics, Population , Japan , Male , Sex Ratio
7.
G3 (Bethesda) ; 10(7): 2519-2528, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32471940

ABSTRACT

Crown-of-thorns starfish, Acanthaster planci (COTS), are common in coral reefs of Indo-Pacific Ocean. Since they are highly fecund predators of corals, periodic outbreaks of COTS cause substantial loss of healthy coral reefs. Using complete mitochondrial DNA sequences, we here examined how COTS outbreaks in the Ryukyu Archipelago, Japan are reflected by the profile of their population genetics. Population genetics of the blue starfish, Linckia laevigata, which lives in the Ryukyu Archipelago, but not break out and the northern Pacific sea star, Asterias amurensis, which lives in colder seawater around the main Islands of Japan, were also examined as controls. Our results showed that As. amurensis has at least two local populations that diverged approximately 4.7 million years ago (MYA), and no genetic exchanges have occurred between the populations since then. Linckia laevigata shows two major populations in the Ryukyu Archipelago that likely diverged ∼6.8 MYA. The two populations, each comprised of individuals collected from coast of the Okinawa Island and those from the Ishigaki Island, suggest the presence of two cryptic species in the Ryukyu Archipelago. On the other hand, population genetics of COTS showed a profile quite different from those of Asterias and Linckia At least five lineages of COTS have arisen since their divergence ∼0.7 MYA, and each of the lineages is present at the Okinawa Island, Miyako Island, and Ishigaki Island. These results suggest that COTS have experienced repeated genetic bottlenecks that may be associated with or caused by repeated outbreaks.


Subject(s)
Asterias , Starfish , Animals , Asterias/genetics , DNA, Mitochondrial/genetics , Japan , Pacific Ocean , Starfish/genetics
8.
Mol Ecol ; 29(2): 363-379, 2020 01.
Article in English | MEDLINE | ID: mdl-31837059

ABSTRACT

The characterization of gene expression in gametes has advanced our understanding of the molecular basis for ecological variation in reproductive success and the evolution of reproductive isolation. These advances are especially significant for ecologically important keystone predators such as the coral-eating crown-of-thorns sea stars (COTS, Acanthaster) which are the most influential predator species in Indo-Pacific coral reef ecosystems and the focus of intensive management efforts. We used RNA-seq and transcriptome assemblies to characterize the expression of genes in mature COTS gonads. We described the sequence and domain organization of eight genes with sex-specific expression and well known functions in fertilization in other echinoderms. We found unexpected expression of genes in one ovary transcriptome that are characteristic of males and sperm, including genes that encode the sperm-specific guanylate cyclase receptor for an egg pheromone, and the sperm acrosomal protein bindin. In a reassembly of previously published RNA-seq data from COTS testes, we found a complementary pattern: strong expression of four genes that are otherwise well known to encode egg-specific fertilization proteins, including the egg receptor for bindin (EBR1) and the acrosome reaction-inducing substance in the egg coat (ARIS1, ARIS2, ARIS3). We also found histological evidence of both eggs and sperm developing in the same gonad in several COTS individuals from a parallel study. These results suggest the occurrence of hermaphrodites, and the potential for reproductive assurance via self-fertilization. Our findings have implications for management of COTS populations, especially in consideration of the large size and massive fecundity of these sea stars.


Subject(s)
Coral Reefs , Starfish/genetics , Animals , Ecosystem , Receptors, Cell Surface/genetics , Transcriptome/genetics
9.
PeerJ ; 7: e7769, 2019.
Article in English | MEDLINE | ID: mdl-31598424

ABSTRACT

BACKGROUND: Precious corals known as coralliid corals (Anthozoa: Octocorallia) play an important role in increasing the biodiversity of the deep sea. Currently, these corals are highly threatened because of overfishing that has been brought on by an increased demand and elevated prices for them.The deep sea precious corals Pleurocorallium elatius and P. konojoi are distributed in Japanese waters and have distinct morphological features: (1) the terminal branches of the colony form of P. elatius are very fine, while those of P. konojoi are blunt and rounded, (2) the autozooids of P. elatius are arranged in approximately four rows, while those of P. konojoi are clustered in groups. However, previous genetic analysis using mtDNA and nuclear DNA did not indicate monophyly. Therefore, it is important to clarify their species status to allow for their conservation. METHODOLOGY: We collected a total of 87 samples (60 of Corallium japonicum and 27 of P. konojoi) from around the Ryukyu Islands and Shikoku Island, which are geographically separated by approximately 1,300 km. We used a multiplexed inter-simple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) and obtained 223 SNPs with which to perform STRUCTURE analysis and principle coordinate analysis (PCoA). In addition, two relatively polymorphic mtDNA regions were sequenced and compared. RESULTS: P. elatius and P. konojoi share a same mtDNA haplotype, which has been previously reported. However, MIG-seq analysis clearly distinguished the two species based on PCoA and STRUCTURE analysis, including 5% of species-specific fixed SNPs. CONCLUSION: This study indicated that P. elatius and P. konojoi are different species and therefore both species should be conserved separately. Our findings highlight the importance of the conservation of these two species, especially P. elatius, whose population has been dramatically depleted over the last 100 years. The study also demonstrated the effectiveness and robustness of MIG-seq for defining closely related octocoral species that were otherwise indistinguishable using traditional genetic markers (mtDNA and EF).

10.
BMC Evol Biol ; 19(1): 187, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615417

ABSTRACT

BACKGROUND: Heliopora coerulea, the blue coral, is the octocoral characterized by its blue skeleton. Recently, two Heliopora species were delimited by DNA markers: HC-A and HC-B. To clarify the genomic divergence of these Heliopora species (HC-A and HC-B) from sympatric and allopatric populations in Okinawa, Japan, we used a high throughput reduced representation genomic DNA sequencing approach (ezRAD). RESULTS: We found 6742 biallelic SNPs shared among all target populations, which successfully distinguished the HC-A and HC-B species in both the sympatric and allopatric populations, with no evidence of hybridization between the two. In addition, we detected 410 fixed SNPs linking functional gene differences, including heat resilience and reproductive timing, between HC-A and HC-B. CONCLUSIONS: We confirmed clear genomic divergence between Heliopora species and found possible genes related to stress-responses and reproduction, which may shed light on the speciation process and ecological divergence of coral species.


Subject(s)
Anthozoa/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Animals , Genetic Association Studies , Genetic Loci , Genetics, Population , Geography , Hybridization, Genetic , Japan , Phylogeny , Species Specificity , Sympatry/genetics
11.
Sci Rep ; 9(1): 1892, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760801

ABSTRACT

As corals in tropical regions are threatened by increasing water temperatures, poleward range expansion of reef-building corals has been observed, and temperate regions are expected to serve as refugia in the face of climate change. To elucidate the important indicators of the sustainability of coral populations, we examined the genetic diversity and connectivity of the common reef-building coral Acropora hyacinthus along the Kuroshio Current, including recently expanded (<50 years) populations. Among the three cryptic lineages found, only one was distributed in temperate regions, which could indicate the presence of Kuroshio-associated larval dispersal barriers between temperate and subtropical regions, as shown by oceanographic simulations as well as differences in environmental factors. The level of genetic diversity gradually decreased towards the edge of the species distribution. This study provides an example of the reduced genetic diversity in recently expanded marginal populations, thus indicating the possible vulnerability of these populations to environmental changes. This finding underpins the importance of assessing the genetic diversity of newly colonized populations associated with climate change for conservation purposes. In addition, this study highlights the importance of pre-existing temperate regions as coral refugia, which has been rather underappreciated in local coastal management.


Subject(s)
Anthozoa/genetics , Climate Change , Animals , Anthozoa/growth & development , Genetic Variation , Genotype , Japan , Refugium , Temperature
12.
Sci Rep ; 8(1): 15875, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367122

ABSTRACT

Maintaining the accretion potential and three dimensional structure of coral reefs is a priority but reef-building scleractinian corals are highly threatened and retreating. Hence future reefs are predicted to be dominated by non-constructional taxa. Since the Late Triassic however, other non-scleractinian anthozoans such as Heliopora have contributed to tropical and subtropical reef-building. Heliopora is an ancient and highly conserved reef building octocoral genus within the monospecific Family Helioporidae, represented by a single extant species - H. coerulea, Pallas, 1766. Here we show integrated morphological, genomic and reproductive evidence to substantiate the existence of a second species within the genus Heliopora. Importantly, some individuals of the new species herein described as Heliopora hiberniana sp. nov. feature a white skeleton indicating that the most diagnostic and conserved Heliopora character (the blue skeleton) can be displaced. The new species is currently known only from offshore areas in north Western Australia, which is a part of the world where coral bleaching events have severely impacted the scleractinian community over the last two decades. Field observations indicate individuals of both H. coerulea and H. hiberniana sp. nov. were intact after the 2016 Scott Reef thermal stress event, and we discuss the possibility that bleaching resistant non-scleractinian reef builders such as Heliopora could provide new ecological opportunities for the reconfiguration of future reefs by filling empty niches and functional roles left open by the regression of scleractinian corals.


Subject(s)
Anthozoa/physiology , Animals , Anthozoa/classification , Anthozoa/genetics , Anthozoa/growth & development , Coral Reefs , Genotype , Microsatellite Repeats/genetics , Microscopy, Electron, Scanning , Phylogeny , Reproduction , Western Australia
13.
Biol Bull ; 232(2): 71-81, 2017 04.
Article in English | MEDLINE | ID: mdl-28654333

ABSTRACT

Heliopora coerulea is the only species in the subclass Octocorallia that has a crystalline aragonite skeleton. The skeleton has been reported to contain the blue pigment, biliverdin IXα, which is formed by heme oxygenase (HO) during heme decomposition. There is little information regarding gene expression in H. coerulea; therefore, the biosynthesis pathway for biliverdin IXα is poorly understood. To identify the genes related to heme synthesis and degradation, metatranscripts of H. coerulea and its symbiont Symbiodinium spp. were sequenced and separated from the host- and symbiont-derived sequences. From the metatranscriptome analyses, all genes for heme synthesis and three HOs were isolated from the host and symbiont. From our phylogenetic and amino acid analysis, we noted that one of the HO isoforms in the host coral was predicted to possess HO activity. However, biliverdin reductase, which reduces biliverdin to bilirubin, was not identified in the present study. Similarly, biliverdin reductase was not identified in the transcripts of the red coral Corallium rubrum, a species that also belongs to Octocorallia. However, genes related to heme synthesis and HO were found in C. rubrum. We speculate that Heliopora coerulea can produce biliverdin and accumulate it in the skeleton, while red corals and other Octocorallia species cannot. Further information from molecular studies of H. coerulea will provide insights into the synthesis of biliverdin IXα, the blue pigment in the hard crystalline aragonite skeleton, and will be fundamental to future ecological and physiological studies.


Subject(s)
Anthozoa/genetics , Biliverdine/genetics , Animals , Anthozoa/classification , Heme/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Phylogeny , Transcriptome
14.
Mol Phylogenet Evol ; 93: 161-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26231382

ABSTRACT

Examining genetic diversity and lineage sorting of different genes in closely related species provide useful information for phylogenetic analyses and ultimately for understanding the origins of biodiversity. In this study, we examined inter- and intraspecific genetic variation in internal transcribed spacer 2 (ITS2), partial mitochondrial gene (mtMutS), and nuclear microsatellite flanking region in two closely related octocoral species (Heliopora coerulea, HC-A and HC-B). These species were recently identified in a population genetic study using microsatellite markers. The two species have different reproductive timing, which ecologically promotes lineage sorting. In this study, we examined whether species boundaries could be detected by the commonly used nuclear ITS2 and mtMutS, as well as by possibly neutral microsatellite flanking sequences. Haplotype network analysis of microsatellite flanking region revealed that a possible ancestral haplotype was still shared between the two species, indicating on-going lineage sorting. Haplotype network analysis of ITS2 and microsatellite flanking region revealed shared haplotypes between the two lineages. The two species shared fewer ITS2 sequences than microsatellite flanking region sequences. The almost fixed point mutation at the tip of helix 3 of ITS2 was not associated with the secondary structure or compensatory base changes (CBCs). The phylogenetic tree of ITS2 showed paraphyly and that of the microsatellite flanking region indicated that lineage sorting for the two species may be incomplete. Much higher intra- and inter-individual variation of ITS2 was observed in HC-B than that in HC-A, highlighting the importance of examining ITS2 from multiple individuals to estimate genetic diversity. The mitochondrial mtMutS gene sequences from 39 individuals, including both species collected from Japan and Taiwan, showed no variation because of slow rates of mitochondrial nucleotide substitution. This study suggests caution is warranted when reciprocal monophyly in a phylogenetic tree is used as the criterion for delimiting closely related octocoral species based on ITS2 or mtMtuS sequences. Detection of boundaries between closely related species requires multi-locus analysis, such as genetic admixture analysis using multiple individuals.


Subject(s)
Anthozoa/genetics , DNA, Mitochondrial/genetics , Animals , DNA, Ribosomal Spacer , Evolution, Molecular , Genes, Mitochondrial , Genetic Variation , Haplotypes , Microsatellite Repeats , Phylogeny , Sequence Analysis, DNA
15.
Mol Ecol ; 23(20): 5102-16, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25208249

ABSTRACT

The clam genus Corbicula is an interesting model system to study the evolution of reproductive modes as it includes both sexual and asexual (androgenetic) lineages. While the sexual populations are restricted to the native Asian areas, the androgenetic lineages are widely distributed being also found in America and Europe where they form a major aquatic invasive pest. We investigated the genetic diversity of native and invasive Corbicula populations through a worldwide sampling. The use of mitochondrial and nuclear (microsatellite) markers revealed an extremely low diversity in the invasive populations with only four, undiversified, genetic lineages distributed across Europe and America. On the contrary, in the native populations, both sexual and androgenetic lineages exhibited much higher genetic diversity. Remarkably, the most abundant and widely distributed invasive forms, the so-called form A and form R found in America and Europe respectively, are fixed for the same single COI (cytochrome c oxydase subunit I) haplotype and same multilocus genotype. This suggests that form R, observed in Europe since the 1980s, derived directly from form A found in America since the 1920s. In addition, this form shares alleles with some Japanese populations, indicating a Japanese origin for this invasive lineage. Finally, our study suggests that few androgenetic Corbicula individuals successfully invaded the non-native range and then dispersed clonally. This is one striking case of genetic paradox raising the issue of invasive and evolutionary success of genetically undiversified populations.


Subject(s)
Corbicula/genetics , Genetic Variation , Genetics, Population , Alleles , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genotype , Haplotypes , Introduced Species , Microsatellite Repeats , Phylogeny , Reproduction, Asexual/genetics , Sequence Analysis, DNA
16.
Mar Genomics ; 11: 27-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23751211

ABSTRACT

Ten novel polymorphic nuclear microsatellite simple sequence repeat (SSR) markers were isolated from an Indo-Pacific horned starfish, Protoreaster nodosus. The isolated SSR markers provided polymorphisms of 2-9 alleles per locus in three populations obtained from Indonesia and the Philippines. The expected and observed heterozygosities ranged from 0.049 to 0.691 and from 0.050 to 0.800, respectively. Pairwise FST values among three populations ranged from 0.018 to 0.050 (global FST=0.031). All P. nodosus individuals collected from three populations exhibited different genotypes for the ten identified SSR markers, indicating that P. nodosus reproduces sexually. Then the developed SSR markers will be useful for studying the population and conservation genetics of P. nodosus.


Subject(s)
Microsatellite Repeats , Starfish/genetics , Animals , Genetics, Population , Heterozygote , Indonesia , Philippines , Polymorphism, Genetic , Sequence Analysis, DNA
17.
Mar Genomics ; 7: 33-5, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22897960

ABSTRACT

We examined the genotypic diversity of the large population of Heliopora coerulea, discovered recently in Ooura Bay, northern Okinawa Main Island Japan, together with another large population in Shiraho Reef, also in southwest Japan, using 9 polymorphic microsatellite markers. From each population, 40 samples were systematically collected along 2 transect lines with 4-m intervals. Surprisingly, all 40 samples from Ooura Bay were mono-genotypic, implying that the huge coral structure (30 m×80 m) originated from a single larva. Conversely, the 40 samples collected from the Shiraho Reef site all had different genotypes; measurements of genetic diversity, H(E) and H(O), were 0.075-0.975 and 0.064-0.655, respectively. At least four factors are considered to make such a huge H. coerulea population with a single genotype in Ooura Bay, (1) origin of single larva or fragment (2) a genetic bottleneck, (3) post settlement selection, and (4) frequent asexual propagation.


Subject(s)
Anthozoa/genetics , Genetic Variation , Genetics, Population , Animals , Genotype , Japan , Microsatellite Repeats/genetics , Reproduction, Asexual/genetics
18.
Mol Ecol ; 18(8): 1574-90, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19302361

ABSTRACT

Population outbreaks of the coral-eating starfish, Acanthaster planci, are hypothesized to spread to many localities in the Indo-Pacific Ocean through dispersal of planktonic larvae. To elucidate the gene flow of A. planci across the Indo-Pacific in relation to ocean currents and to test the larval dispersal hypothesis, the genetic structure among 23 samples over the Indo-Pacific was analysed using seven highly polymorphic microsatellite loci. The F-statistics and genetic admixture analysis detected genetically distinct groups in accordance with ocean current systems, that is, the Southeast African group (Kenya and Mayotte), the Northwestern Pacific group (the Philippines and Japan), Palau, the North Central Pacific group (Majuro and Pohnpei), the Great Barrier Reef, Fiji, and French Polynesia, with a large genetic break between the Indian and Pacific Oceans. A pattern of significant isolation by distance was observed among all samples (P = 0.001, r = 0.88, n = 253, Mantel test), indicating restricted gene flow among the samples in accordance with geographical distances. The data also indicated strong gene flow within the Southeast African, Northwestern Pacific, and Great Barrier Reef groups. These results suggest that the western boundary currents have strong influence on gene flow of this species and may trigger secondary outbreaks.


Subject(s)
Gene Flow , Genetics, Population , Microsatellite Repeats , Starfish/genetics , Water Movements , Animals , Genetic Variation , Geography , Linkage Disequilibrium , Pacific Ocean , Phylogeny , Sequence Analysis, DNA
19.
BMC Genomics ; 7: 17, 2006 Jan 27.
Article in English | MEDLINE | ID: mdl-16438737

ABSTRACT

BACKGROUND: The crown-of-thorns starfish, Acanthaster planci (L.), has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. Because of its high fecundity and the long duration of the pelagic larval stage, the mechanism of outbreaks may be related to its meta-population dynamics, which should be examined by larval sampling and population genetic analysis. However, A. planci larvae have undistinguished morphological features compared with other asteroid larvae, hence it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. Also, no tools are available to reveal the dispersal pathway of A. planci larvae. Therefore the development of highly polymorphic genetic markers has the potential to overcome these difficulties. To obtain genomic information for these purposes, the complete nucleotide sequences of the mitochondrial genome of A. planci and its putative sibling species, A. brevispinus were determined and their characteristics discussed. RESULTS: The complete mtDNA of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively. These values fall within the length variation range reported for other metazoan mitochondrial genomes. They contain 13 proteins, 2 rRNA, and 22 tRNA genes and the putative control region in the same order as the asteroid, Asterina pectinifera. The A + T contents of A. planci and A. brevispinus on their L strands that encode the majority of protein-coding genes are 56.3% and 56.4% respectively and are lower than that of A. pectinifera (61.2%). The percent similarity of nucleotide sequences between A. planci and A. brevispinus is found to be highest in the CO2 and CO3 regions (both 90.6%) and lowest in ND2 gene (84.2%) among the 13 protein-coding genes. In the deduced putative amino acid sequences, CO1 is highly conserved (99.2%), and ATP8 apparently evolves faster any of the other protein-coding gene (85.2%). CONCLUSION: The gene arrangement, base composition, codon usage and tRNA structure of A. planci are similar to those of A. brevispinus. However, there are significant variations between A. planci and A. brevispinus. Complete mtDNA sequences are useful for the study of phylogeny, larval detection and population genetics.


Subject(s)
Genome, Mitochondrial , Starfish/genetics , Animals , Asterina/classification , Asterina/genetics , Base Composition , Base Sequence , Codon/genetics , Codon, Initiator/genetics , Codon, Terminator/genetics , DNA, Intergenic , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Molecular Sequence Data , Phylogeny , RNA, Transfer/genetics , Sequence Homology, Nucleic Acid , Species Specificity , Starfish/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...