Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 19001, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347928

ABSTRACT

High intensity near infrared femtosecond laser is a promising tool for three-dimensional processing of biological materials. During the processing of cells and tissues, long lasting gas bubbles randomly appeared around the laser focal point, however physicochemical and mechanical effects of the gas bubbles has not been emphasized. This paper presents characteristic behaviors of the gas bubbles and their contact effects on cell viability. High-speed imaging of the gas bubble formation with various additives in physiological medium confirms that the gas bubble consists of dissolved air, and amphipathic proteins stabilize the bubble surface. This surface protective layer inhibits interactions of gas bubbles and cell membranes. Consequently, the gas bubble contact does not cause critical effects on cell viability. On the other hands, burst of gas bubbles stimulated by an impact of femtosecond laser induced cavitation can lead to liquid jet flow that might cause serious mechanical damages on cells. These results provide insights for the parameter of biological tissue processing with intense fs laser pulses.


Subject(s)
Cell Culture Techniques , Lasers , Cell Survival
2.
Sci Rep ; 12(1): 13044, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915101

ABSTRACT

The stiffness of a plant cell in response to an applied force is determined not only by the elasticity of the cell wall but also by turgor pressure and cell geometry, which affect the tension of the cell wall. Although stiffness has been investigated using atomic force microscopy (AFM) and Young's modulus of the cell wall has occasionally been estimated using the contact-stress theory (Hertz theory), the existence of tension has made the study of stiffness more complex. Elastic shell theory has been proposed as an alternative method; however, the estimation of elasticity remains ambiguous. Here, we used finite element method simulations to verify the formula of the elastic shell theory for onion (Allium cepa) cells. We applied the formula and simulations to successfully quantify the turgor pressure and elasticity of a cell in the plane direction using the cell curvature and apparent stiffness measured by AFM. We conclude that tension resulting from turgor pressure regulates cell stiffness, which can be modified by a slight adjustment of turgor pressure in the order of 0.1 MPa. This theoretical analysis reveals a path for understanding forces inherent in plant cells.


Subject(s)
Cell Wall , Plant Cells , Cell Wall/physiology , Elastic Modulus , Elasticity , Microscopy, Atomic Force/methods , Onions , Plant Cells/physiology
3.
Biomed Opt Express ; 12(3): 1366-1374, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796359

ABSTRACT

Mechanical properties of cells and tissues closely link to their architectures and physiological functions. To obtain the mechanical information of submillimeter scale small biological objects, we recently focused on the object vibration responses when excited by a femtosecond laser-induced impulsive force. These responses are monitored by the motion of an AFM cantilever placed on top of a sample. In this paper, we examined the surface cellular stiffness of zebrafish embryos based on excited vibration forms in different cytoskeletal states. The vibration responses were more sensitive to their surface cellular stiffness in comparison to the Young's modulus obtained by a conventional AFM force curve measurement.

4.
Opt Express ; 29(2): 2809-2818, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726470

ABSTRACT

The grating, lens, and linear sensor determine a spectrometer's wavelength resolution and measurement range. While conventional methods have tried to improve the optical design to obtain a better resolution, they have a limitation caused by the physical property. To improve the resolution, we introduce a super-resolution method from the computer vision field. We propose tilting an area sensor to realize accurate subpixel shifting and recover a high-resolution spectrum using interpolated spectrally varying kernels. We experimentally validate that the proposed method achieved a high spectral resolution of 0.141nm in 400-800nm by just tilting the sensor in the spectrometer.

5.
Chemphyschem ; 21(22): 2614-2619, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-32926535

ABSTRACT

Localized surface plasmon resonance (LSPR) excitation on the photochromic reaction of a diarylethene derivative (DE) was studied by surface enhanced Raman scattering (SERS). UV and visible light irradiations transform reversibly DE between open-form (OF) and closed-form (CF) isomers, respectively. A mixture of PMMA and DE (either OF or CF isomer) was spin-coated onto gold nanorods (GNRs) arrays, designed by electron beam lithography, with two localized surface plasmon resonances (LSPR) at distinct wavelengths, due to their anisotropy. The photochromic reaction rates from CF to OF isomers, under LSPR excitation, were monitored from SERS spectral changes under different polarizations, on the same GNR substrate to compare the effect of LSPR field strength. It appears that the photoisomerization rate was faster when LSPR was excited with the polarization parallel to the GNR long axis. The present results highlight a potential genuine mechanism, from near field LSPR excitation, involved in the photochromic enhancement of diarylethene photochromes.

6.
Sci Rep ; 9(1): 17530, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772312

ABSTRACT

Femtosecond laser photoporation has become a popular method to deliver various kinds of molecules such as genes, proteins, and fluorescent dyes into single mammalian cells. However, this method is not easily applied to plant cells because their cell wall and turgor pressure prevent the delivery, especially for larger molecules than the mesh size of the cell wall. This work is the first demonstration of the efficient photoinjection of megadalton molecules into a cytoplasm of an intact single plant cell by employing a femtosecond laser amplifier under moderate enzyme treatment conditions. The intense femtosecond laser pulse effectively formed a pore on the cell wall and membrane of Tobacco BY-2, and 2 MDa dextran molecules were introduced through the pore. Along with the pore formation, induced mechanical tensile stresses on BY-2 cells were considered to increase permeability of the cell membrane and enhance the uptake of large molecules. Moreover, the moderate enzyme treatment partially degraded the cell wall thereby facilitating the increase of the molecular introduction efficiency.


Subject(s)
Macromolecular Substances/administration & dosage , Microinjections/methods , Plant Cells , Amplifiers, Electronic , Cell Membrane , Cell Wall , Dextrans/administration & dosage , Enzymes/metabolism , Gene Transfer Techniques , Lasers , Microscopy, Confocal , Plant Cells/ultrastructure , Nicotiana/cytology
7.
Sci Rep ; 7: 39766, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28054556

ABSTRACT

Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells.


Subject(s)
Immune System/physiology , Protein Conformation , Syk Kinase/metabolism , Allosteric Regulation , Allosteric Site/genetics , Humans , Phosphorylation , Protein Engineering , Signal Transduction , Spectrum Analysis, Raman/methods , Syk Kinase/chemistry , Syk Kinase/genetics
8.
Sci Rep ; 6: 22918, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26953165

ABSTRACT

The two-step nucleation model for crystal nuclei formation explains several experimental and theoretical results better than the classical nucleation theory. We report here direct visualization of the two-step nucleation model for organic molecular crystallization. Evaporative crystallization from a solution of a dibenzoylmethane boron complex that displays mechanofluorochromism, a fluorescence color change induced by mechanical perturbation, was probed by fluorescence change. The dependence of fluorescence change on dispersion concentration of the complex in a polymer matrix was also investigated. We detected transitional emission from the amorphous cluster state prior to crystallization. This is the first demonstration of the two-step nucleation model based on fluorescence color changes.

9.
Nanotechnology ; 27(11): 115202, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26872242

ABSTRACT

Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size.

10.
ACS Nano ; 8(4): 3421-6, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24601546

ABSTRACT

A billion-fold increase in the Raman signal over conventional tip-enhanced Raman spectroscopy/microscopy (TERS) is reported. It is achieved by introducing a stimulating beam confocal with the pump beam into a conventional TERS setup. A stimulated TERS spectrum, closely corresponding to its spontaneous TERS counterpart, is obtained by plotting the signal intensity of the strongest Raman peak of an azobenzene thiol self-assembled monolayer versus the stimulating laser frequency. The stimulated TERS image of azobenzene thiol molecules grafted onto Au ⟨111⟩ clearly shows the surface distribution of the molecules, whereas, when compared to the simultaneously recorded surface topography, it presents an image contrast of different nature. The experimentally obtained stimulated gain is estimated at 1.0 × 10(9), which is in reasonable agreement with the theoretically predicted value. In addition to the signal increase, the signal-to-noise ratio was 3 orders of magnitude higher than in conventional spontaneous TERS. The proposed stimulated TERS technique offers the possibility for a substantially faster imaging of the surface with respect to normal TERS.

11.
Chemphyschem ; 15(2): 276-82, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24446207

ABSTRACT

Mixed thiol self-assembled monolayers (SAMs) presenting methyl and azobenzene head groups were prepared by chemical substitution from the original single-component n-decanethiol or [4-(phenylazo)phenoxy]hexane-1-thiol SAMs on polycrystalline gold substrates. Static contact-angle measurements were carried out to confirm a change in the hydrophobicity of the functionalized surfaces following the exchange reaction. The mixed SAMs presented contact-angle values between those of the more hydrophobic n-decanethiol and the more hydrophilic [4-(phenylazo)phenoxy]hexane-1-thiol single-component SAMs. By means of tip-enhanced Raman spectroscopy (TERS) mapping experiments, it was possible to highlight that molecular replacement takes place easily and first at grain boundaries: for two different mixed SAM compositions, TERS point-by-point maps with <50 nm step sizes showed different spectral signatures in correspondence to the grain boundaries. An example of the substitution extending beyond grain boundaries and affecting flat areas of the gold surface is also shown.

12.
Langmuir ; 29(41): 12633-7, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24070218

ABSTRACT

A facile method for growing silica layer on lithographically designed gold nanorod arrays (GNRAs) using a convenient sol-gel method is presented herein. The silica layer thickness was controlled on GNRAs with the reaction time. The localized surface plasmon resonance (LSPR) spectra of these hybrid metal/dielectric nanoparticles were recorded before and after the coating and the effect of different solvents on the LSPR were also assessed. The change in the fluorescence and SERS intensities of a probe molecule (Rh6G) deposited on GNRAs and silica-coated GNRAs revealed that the as-fabricated silica layer does inhibit the quenching of molecular excited states and enhances photophysical/photochemical processes. This kind of hybrid metal/dielectric nanoparticle arrays hence turn out to be real good candidates to design new "plasmonic-active" devices.

13.
Phys Chem Chem Phys ; 15(24): 9670-8, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23665812

ABSTRACT

Hybrid materials combining gold nanoparticles (GNP) of variable diameter and an organic thin layer of photochromic diarylethenes were achieved. Solid-state photoswitching based on ring-closure/ring-opening reaction was carried out under alternate UV and visible irradiations. In addition to the spectral changes due to the photochromism itself, the surface plasmon resonance related to the GNP is significantly modified, influenced by a photoinduced change in the refractive index of its environment. These two contributions were sorted out, showing the possibility of probing a photochromic switch by following the plasmon band. The shape change of the plasmon band was consistently compared to calculations based on the Mie theory. Additionally, with one given diarylethene compound, both UV-visible spectroscopy and surface enhanced Raman scattering (SERS) spectroscopy showed an acceleration of the ring-opening photochromic reaction in the presence of GNP.

SELECTION OF CITATIONS
SEARCH DETAIL