Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37571166

ABSTRACT

Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan-3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation products with Si extracted from the hybrids in nerve regeneration are not clear. In this study, we prepared porous chitosan-GPTMS hybrids with different amounts of GPTMS to amino groups of chitosan (chitosan:GPTMS = 1:0.5 and 1:1 molar ratios). The structures of the degradation products with Si from the hybrids were examined using time-of-flight mass spectrometry, and biological assessments were conducted in order to evaluate their potential use in the preparation of devices for nerve repair. Glial and motor cell lines and ex vivo explants of dorsal root ganglia were used in this study for evaluating their behavior in the presence of the different degradation products with Si. The structure of the degradation products with Si depended on the starting composition. The results showed that glial cell proliferation was lower in the medium with the higher-molecular-weight degradation products with Si. Moreover, motor cell line differentiation and the neurite outgrowth of dorsal root ganglion explants were improved with the lower-molecular-weight degradation products with Si. The results obtained could be useful for designing a new nerve regeneration scaffold including silicon components.

2.
Molecules ; 25(22)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202787

ABSTRACT

Chitosan microfibers are widely used in medical applications because they have favorable inherent properties. However, their mechanical properties require further improvement. In the present study, a trimethoxysilane aldehyde (TMSA) crosslinking agent was added to chitosan microfibers to improve their tensile strength. The chitosan microfibers were prepared using a coagulation method. The tensile strength of the chitosan microfibers was improved by crosslinking them with TMSA, even when only a small amount was used (less than 1%). TMSA did not change the orientation of the chitosan molecules. Furthermore, aldehyde derived from TMSA did not remain, and siloxane units were formed in the microfibers.


Subject(s)
Aldehydes/chemistry , Chitosan/chemistry , Cross-Linking Reagents/chemistry , Silanes/chemistry , Materials Testing , Ninhydrin/chemistry , Pressure , Silicon/chemistry , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Tensile Strength , Tissue Scaffolds , X-Ray Diffraction
3.
Polymers (Basel) ; 11(10)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615042

ABSTRACT

Microporous spheres in a hybrid system consisting of chitosan and γ-glycidoxypropyltrimethoxysilane (GPTMS) have advantages in a range of applications, e.g., as vehicles for cell transplantation and soft tissue defect filling materials, because of their excellent cytocompatibility with various cells. In this study, microporous chitosan-GPTMS spheres were prepared by dropping chitosan-GPTMS precursor sols, with or without a cerium chloride, into liquid nitrogen using a syringe pump. The droplets were then freeze dried to give the pores of size 10 to 50 µm. The cell culture tests showed that L929 fibroblast-like cells migrated into the micropores larger than 50 µm in diameter, whereas MG63 osteoblast-like cells proliferated well and covered the granule surfaces. The spheres with cerium chloride showed antibacterial properties against both gram-negative and gram-positive bacteria.

4.
J Mater Sci Mater Med ; 28(3): 46, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28161832

ABSTRACT

One of the most important and novel approaches of biomedical engineering is the development of new, effective and non-invasive medical diagnosis abilities, and treatments that have such requirements as advanced technologies for tumor imaging. Gadolinium (Gd) compounds can be used as MRI contrast agents, however the release of Gd3+ ions presents some adverse side effects such as renal failure, pancreatitis or local necrosis. The main aim of the work was the development and optimization of Gadolinium based nanoparticles coated with silica to be used as bioimaging agent. Gd based nanoparticles were prepared through a precipitation method and afterwards, these nanoparticles were covered with silica, using Stöber method with ammonia and functionalized with 3-Aminopropyltriethoxysilane (APTES). Results showed that nanoparticles were homogeneous regarding chemical composition, silica layer thickness, total size and morphology. Also, silica coating was successfully not degraded after 4 weeks at pH 5.5, 6.0 and 7.4, contrary to GdOHCO3 nanoparticles that degraded. Regarding the in vitro cell tests, very good cell proliferation and viability were observed. In conclusion, the results showed that Gd based nanoparticles coated with silica for imaging applications were successfully obtained under a well-controlled method. Furthermore, silica coating may enhance magnetic nanoparticles biosafety because it avoids GdOHCO3 degradation into harmful products (such as Gd3+ ions) at physiological conditions.


Subject(s)
Gadolinium/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Silicon Dioxide/chemistry , Biomedical Engineering , Cell Proliferation , Cell Survival , Contrast Media/chemistry , Fibroblasts/metabolism , Humans , Hydrogen-Ion Concentration , L-Lactate Dehydrogenase/metabolism , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Microscopy, Electron, Transmission , Necrosis/drug therapy , Pancreatitis/drug therapy , Propylamines/chemistry , Renal Insufficiency/drug therapy , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...