Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 35(1-2): 36-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38126359

ABSTRACT

Adeno-associated virus (AAV) vectors are used to deliver therapeutic transgenes, but host immune responses may interfere with transduction and transgene expression. We evaluated prophylactic corticosteroid treatment on AAV5-mediated expression in liver tissue. Wild-type C57BL/6 mice received 6 × 1013 vg/kg AAV5-HLP-hA1AT, an AAV5 vector carrying a human α1-antitrypsin (hA1AT) gene with a hepatocyte-specific promoter. Mice received 4 weeks of daily 2 mg/kg prednisolone or water starting day -1 or 0 before vector dosing. Mice that received prophylactic corticosteroids had significantly higher serum hA1AT protein than mice that did not, starting at 6 weeks and persisting to the study end at 12 weeks, potentially through a decrease in the number of low responders. RNAseq and proteomic analyses investigating mechanisms mediating the improvement of transgene expression found that prophylactic corticosteroid treatment upregulated the AAV5 coreceptor platelet-derived growth factor receptor alpha (PDGFRα) on hepatocytes and downregulated its competitive ligand PDGFα, thus increasing the uptake of AAV5 vectors. Evidently, prophylactic corticosteroid treatment also suppressed acute immune responses to AAV. Together, these mechanisms resulted in increased uptake and preservation of the transgene, allowing more vector genomes to be available to assemble into stable, full-length structures mediating long-term transgene expression. Prophylactic corticosteroids represent a potential actionable strategy to improve AAV5-mediated transgene expression and decrease intersubject variability.


Subject(s)
Prednisolone , Proteomics , Humans , Mice , Animals , Up-Regulation , Mice, Inbred C57BL , Hepatocytes , Transgenes , Adrenal Cortex Hormones , Receptors, Platelet-Derived Growth Factor/genetics , Immunity, Innate , Dependovirus/genetics , Genetic Vectors/genetics
3.
Mol Ther ; 30(12): 3570-3586, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36348622

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.


Subject(s)
Epigenesis, Genetic , Insecta , Humans , Mice , Animals , HEK293 Cells , Mice, Inbred C57BL , RNA , Mammals
4.
Mol Ther Methods Clin Dev ; 26: 519-531, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36092364

ABSTRACT

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.

5.
Nat Med ; 28(4): 789-797, 2022 04.
Article in English | MEDLINE | ID: mdl-35411075

ABSTRACT

Factor VIII gene transfer with a single intravenous infusion of valoctocogene roxaparvovec (AAV5-hFVIII-SQ) has demonstrated clinical benefits lasting 5 years to date in people with severe hemophilia A. Molecular mechanisms underlying sustained AAV5-hFVIII-SQ-derived FVIII expression have not been studied in humans. In a substudy of the phase 1/2 clinical trial ( NCT02576795 ), liver biopsy samples were collected 2.6-4.1 years after gene transfer from five participants. Primary objectives were to examine effects on liver histopathology, determine the transduction pattern and percentage of hepatocytes transduced with AAV5-hFVIII-SQ genomes, characterize and quantify episomal forms of vector DNA and quantify transgene expression (hFVIII-SQ RNA and hFVIII-SQ protein). Histopathology revealed no dysplasia, architectural distortion, fibrosis or chronic inflammation, and no endoplasmic reticulum stress was detected in hepatocytes expressing hFVIII-SQ protein. Hepatocytes stained positive for vector genomes, showing a trend for more cells transduced with higher doses. Molecular analysis demonstrated the presence of full-length, inverted terminal repeat-fused, circular episomal genomes, which are associated with long-term expression. Interindividual differences in transgene expression were noted despite similar successful transduction, possibly influenced by host-mediated post-transduction mechanisms of vector transcription, hFVIII-SQ protein translation and secretion. Overall, these results demonstrate persistent episomal vector structures following AAV5-hFVIII-SQ administration and begin to elucidate potential mechanisms mediating interindividual variability.


Subject(s)
Dependovirus , Hemophilia A , Dependovirus/genetics , Dependovirus/metabolism , Factor VIII/genetics , Factor VIII/therapeutic use , Genetic Therapy/methods , Genetic Vectors/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Humans , RNA, Messenger , Transgenes/genetics
6.
Mol Ther Methods Clin Dev ; 24: 142-153, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35036471

ABSTRACT

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype 5 (AAV5)-based gene therapy vector containing a B-domain-deleted human coagulation factor VIII (hFVIII) gene controlled by a liver-selective promoter. AAV5-hFVIII-SQ is currently under clinical investigation as a treatment for severe hemophilia A. The full-length AAV5-hFVIII-SQ is >4.9 kb, which is over the optimal packaging limit of AAV5. Following administration, the vector must undergo a number of genome-processing, assembly, and repair steps to form full-length circularized episomes that mediate long-term FVIII expression in target tissues. To understand the processing kinetics of the oversized AAV5-hFVIII-SQ vector genome into circular episomes, we characterized the various molecular forms of the AAV5-hFVIII-SQ genome at multiple time points up to 6 months postdose in the liver of murine and non-human primate models. Full-length circular episomes were detected in liver tissue beginning 1 week postdosing. Over 6 months, quantities of circular episomes (in a predominantly head-to-tail configuration) increased, while DNA species lacking inverted terminal repeats were preferentially degraded. Levels of duplex, circular, full-length genomes significantly correlated with levels of hFVIII-SQ RNA transcripts in mice and non-human primates dosed with AAV5-hFVIII-SQ. Altogether, we show that formation of full-length circular episomes in the liver following AAV5-hFVIII-SQ transduction was associated with long-term FVIII expression.

7.
Mol Ther Methods Clin Dev ; 18: 620-630, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32775496

ABSTRACT

Adeno-associated virus 5 (AAV5)-human factor VIII-SQ (hFVIII-SQ; valoctocogene roxaparvovec) is an AAV-mediated product under evaluation for treatment of severe hemophilia A, which contains a B-domain-deleted hFVIII (hFVIII-SQ) transgene and a hybrid liver-specific promotor (HLP). To increase FVIII-SQ expression and reduce the vector dose required, a stronger promoter may be considered. However, because FVIII-SQ is a protein known to be difficult to fold and secrete, this could potentially induce endoplasmic reticulum (ER) stress. We evaluated the effect of two AAV5-hFVIII-SQ vectors with different liver-specific promoter strength (HLP << 100ATGB) on hepatic ER stress in mice. Five weeks after receiving vehicle or vector, the percentage of transduced hepatocytes and levels of liver hFVIII-SQ DNA and RNA increased dose dependently for both vectors. At lower doses, plasma hFVIII-SQ protein levels were higher for 100ATGB. This difference was attenuated at the highest dose. For 100ATGB, liver hFVIII-SQ protein accumulated dose dependently, with increased expression of ER stress markers at the highest dose, suggesting hepatocytes reached or exceeded their capacity to fold/secrete hFVIII-SQ. These data suggest that weaker promoters may require relatively higher doses to distribute expression load across a greater number of hepatocytes, whereas relatively stronger promoters may produce comparable levels of FVIII in fewer hepatocytes, with potential for ER stress.

8.
Mol Ther ; 26(2): 496-509, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29292164

ABSTRACT

Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.


Subject(s)
Factor VIII/genetics , Genetic Therapy , Hemophilia A/genetics , Hemophilia A/therapy , Peptide Fragments/genetics , Animals , Apoptosis/genetics , Cell Line , Dependovirus/genetics , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Gene Expression , Gene Order , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Hemophilia A/blood , Liver/metabolism , Male , Mice , Mice, Transgenic , Peptide Fragments/blood , Primates , Promoter Regions, Genetic
9.
Mol Ther Methods Clin Dev ; 6: 43-53, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28664165

ABSTRACT

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu-/- mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu-/- mice were treated with 1-100 µg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 µg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu-/- mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu-/- mouse brain.

10.
PLoS Genet ; 8(11): e1003042, 2012.
Article in English | MEDLINE | ID: mdl-23209424

ABSTRACT

A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.


Subject(s)
Huntington Disease , Nerve Tissue Proteins , RNA Interference , ras Proteins , Animals , Corpus Striatum/ultrastructure , Disease Models, Animal , Drosophila melanogaster/genetics , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Genome, Human , HEK293 Cells , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/metabolism , Metabolic Networks and Pathways , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/toxicity , Nerve Tissue Proteins/ultrastructure , Neurons/drug effects , Neurons/metabolism , Pyrimidines/pharmacology , Signal Transduction/drug effects , Triazoles/pharmacology , ras Proteins/antagonists & inhibitors , ras Proteins/genetics , ras Proteins/metabolism
11.
Carcinogenesis ; 29(1): 70-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17984111

ABSTRACT

While many p53-deficient cell types are impaired in global genomic nucleotide excision repair of cyclobutane pyrimidine dimers (CPDs), human epidermal keratinocytes expressing human papillomavirus type 16 E6 and E7 are p53 deficient and yet maintain repair of CPD. We hypothesized that the p53 homolog, p63, may participate in governing global repair instead of p53 in keratinocytes. Following ultraviolet radiation (UVR) of E6/E7 keratinocytes, depletion of p63 but not of p73 impaired global genomic repair of CPD relative to control cells. In all cases, repair of pyrimidine(6-4)pyrimidone photoproducts, the other major UVR-induced DNA lesions, was unaffected. In E6/E7 keratinocytes treated with p63 small interfering RNA, reduced global repair of CPD was associated not with reduced levels of messenger RNA-encoding DNA damage recognition proteins but rather with decreased levels of DDB2 and XPC proteins, suggesting that p63 posttranscriptionally regulates levels of these proteins. These results indicate that global repair may be regulated at multiple levels and suggest a novel role for p63 in modulating repair of DNA damage in human keratinocytes. The results may provide insight into mechanisms of genomic stability in epithelia infected with oncogenic human papilloma viruses and may further explain the lack of increased skin cancer incidence in Li-Fraumeni syndrome.


Subject(s)
Keratinocytes/metabolism , Membrane Proteins/metabolism , Pyrimidine Dimers/metabolism , Tumor Suppressor Protein p53/metabolism , Base Sequence , Cells, Cultured , Dimerization , Humans , Phosphoinositide-3 Kinase Inhibitors , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...