Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Am Coll Cardiol ; 83(21): 2037-2048, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38599256

ABSTRACT

BACKGROUND: In nonobstructive hypertrophic cardiomyopathy (nHCM), there are no approved medical therapies. Impaired myocardial energetics is a potential cause of symptoms and exercise limitation. Ninerafaxstat, a novel cardiac mitotrope, enhances cardiac energetics. OBJECTIVES: This study sought to evaluate the safety and efficacy of ninerafaxstat in nHCM. METHODS: Patients with hypertrophic cardiomyopathy and left ventricular outflow tract gradient <30 mm Hg, ejection fraction ≥50%, and peak oxygen consumption <80% predicted were randomized to ninerafaxstat 200 mg twice daily or placebo (1:1) for 12 weeks. The primary endpoint was safety and tolerability, with efficacy outcomes also assessed as secondary endpoints. RESULTS: A total of 67 patients with nHCM were enrolled at 12 centers (57 ± 11.8 years of age; 55% women). Serious adverse events occurred in 11.8% (n = 4 of 34) in the ninerafaxstat group and 6.1% (n = 2 of 33) of patients in the placebo group. From baseline to 12 weeks, ninerafaxstat was associated with significantly better VE/Vco2 (ventilatory efficiency) slope compared with placebo with a least-squares (LS) mean difference between the groups of -2.1 (95% CI: -3.6 to -0.6; P = 0.006), with no significant difference in peak VO2 (P = 0.90). The Kansas City Cardiomyopathy Questionnaire Clinical Summary Score was directionally, though not significantly, improved with ninerafaxstat vs placebo (LS mean 3.2; 95% CI: -2.9 to 9.2; P = 0.30); however, it was statistically significant when analyzed post hoc in the 35 patients with baseline Kansas City Cardiomyopathy Questionnaire Clinical Summary Score ≤80 (LS mean 9.4; 95% CI: 0.3-18.5; P = 0.04). CONCLUSIONS: In symptomatic nHCM, novel drug therapy targeting myocardial energetics was safe and well tolerated and associated with better exercise performance and health status among those most symptomatically limited. The findings support assessing ninerafaxstat in a phase 3 study.


Subject(s)
Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Hypertrophic/drug therapy , Female , Male , Middle Aged , Double-Blind Method , Treatment Outcome , Aged , Oxygen Consumption/drug effects
2.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38507255

ABSTRACT

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Subject(s)
Aortic Valve Stenosis , Cardiomyopathy, Hypertrophic , Humans , Peroxisome Proliferator-Activated Receptors , Cardiomyopathy, Hypertrophic/genetics , Hypertrophy, Left Ventricular/genetics , Aortic Valve Stenosis/genetics , Fatty Acids/metabolism
3.
Philos Trans A Math Phys Eng Sci ; 381(2263): 20220373, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-37926212

ABSTRACT

In this paper, we formulate a geometric nonlinear theory of the mechanics of accreting-ablating bodies. This is a generalization of the theory of accretion mechanics of Sozio & Yavari (Sozio & Yavari 2019 J. Nonlinear Sci. 29, 1813-1863 (doi:10.1007/s00332-019-09531-w)). More specifically, we are interested in large deformation analysis of bodies that undergo a continuous and simultaneous accretion and ablation on their boundaries while under external loads. In this formulation, the natural configuration of an accreting-ablating body is a time-dependent Riemannian [Formula: see text]-manifold with a metric that is an unknown a priori and is determined after solving the accretion-ablation initial-boundary-value problem. In addition to the time of attachment map, we introduce a time of detachment map that along with the time of attachment map, and the accretion and ablation velocities, describes the time-dependent reference configuration of the body. The kinematics, material manifold, material metric, constitutive equations and the balance laws are discussed in detail. As a concrete example and application of the geometric theory, we analyse a thick hollow circular cylinder made of an arbitrary incompressible isotropic material that is under a finite time-dependent extension while undergoing continuous ablation on its inner cylinder boundary and accretion on its outer cylinder boundary. The state of deformation and stress during the accretion-ablation process, and the residual stretch and stress after the completion of the accretion-ablation process, are computed. This article is part of the theme issue 'Foundational issues, analysis and geometry in continuum mechanics'.

4.
AAPS PharmSciTech ; 23(6): 220, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948842

ABSTRACT

The present study aimed to investigate if the manufacturer variability of croscarmellose sodium, a superdisintegrant, could have an impact on the dissolution of sitagliptin phosphate (a highly water-soluble drug) and escitalopram oxalate (a sparingly soluble drug) from their tablets. Some of the physicochemical properties of croscarmellose sodium (CCS) powders obtained from four different manufacturers were studied. Tablets containing 25 mg sitagliptin phosphate and 10 mg escitalopram oxalate were prepared, and the effects of the source and varying concentration of CCS (0, 1, 3, and 5%w/w) on the disintegration time and dissolution rate of the mentioned drugs were investigated. The results of the following tests: degree of substitution, residue on ignition, loss on drying, content of water-soluble material, and pH, carried out according to the USP/NF CCS monograph, were within the acceptance criteria for all four products. However, considerable differences were found in the swelling behavior of CCS samples, differentiating them into two groups of highly swelling and low-swelling products. The disintegration times of the tablets containing different quantities of the various CCS samples were similar, which confirms the indiscriminatory nature of this test. However, the highly swelling CCSs resulted in tablets with superior dissolution profiles. While with the highly water-soluble drug, increasing the concentration of low-swelling CCSs to 3 or 5% could improve the dissolution profiles; in the case of sparingly soluble drug, this was not possible. Therefore, functional differences between CCSs produced by various manufacturers are affected by the drug solubility and the ratio of the disintegrant used in the formulations.


Subject(s)
Carboxymethylcellulose Sodium , Escitalopram , Carboxymethylcellulose Sodium/chemistry , Oxalates , Sitagliptin Phosphate , Solubility , Tablets/chemistry , Water/chemistry
5.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35192718

ABSTRACT

The indigenous population of the United Arab Emirates (UAE) has a unique demographic and cultural history. Its tradition of endogamy and consanguinity is expected to produce genetic homogeneity and partitioning of gene pools while population movements and intercontinental trade are likely to have contributed to genetic diversity. Emiratis and neighboring populations of the Middle East have been underrepresented in the population genetics literature with few studies covering the broader genetic history of the Arabian Peninsula. Here, we genotyped 1,198 individuals from the seven Emirates using 1.7 million markers and by employing haplotype-based algorithms and admixture analyses, we reveal the fine-scale genetic structure of the Emirati population. Shared ancestry and gene flow with neighboring populations display their unique geographic position while increased intra- versus inter-Emirati kinship and sharing of uniparental haplogroups, reflect the endogamous and consanguineous cultural traditions of the Emirates and their tribes.


Subject(s)
Genetic Structures , Genetics, Population , Consanguinity , Geography , Humans , United Arab Emirates
6.
Cardiovasc Res ; 118(5): 1218-1231, 2022 03 25.
Article in English | MEDLINE | ID: mdl-33769464

ABSTRACT

Lipid- and lipoprotein-modifying therapies have expanded substantially in the last 25 years, resulting in reduction in the incidence of major adverse cardiovascular events. However, no specific lipoprotein(a) [Lp(a)]-targeting therapy has yet been shown to reduce cardiovascular disease risk. Many epidemiological and genetic studies have demonstrated that Lp(a) is an important genetically determined causal risk factor for coronary heart disease, aortic valve disease, stroke, heart failure, and peripheral vascular disease. Accordingly, the need for specific Lp(a)-lowering therapy has become a major public health priority. Approximately 20% of the global population (1.4 billion people) have elevated levels of Lp(a) associated with higher cardiovascular risk, though the threshold for determining 'high risk' is debated. Traditional lifestyle approaches to cardiovascular risk reduction are ineffective at lowering Lp(a). To address a lifelong risk factor unmodifiable by non-pharmacological means, Lp(a)-lowering therapy needs to be safe, highly effective, and tolerable for a patient population who will likely require several decades of treatment. N-acetylgalactosamine-conjugated gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting LPA, are ideally suited for this application, offering a highly tissue- and target transcript-specific approach with the potential for safe and durable Lp(a) lowering with as few as three or four doses per year. In this review, we evaluate the causal role of Lp(a) across the cardiovascular disease spectrum, examine the role of established lipid-modifying therapies in lowering Lp(a), and focus on the anticipated role for siRNA therapeutics in treating and preventing Lp(a)-related disease.


Subject(s)
Cardiovascular Diseases , Lipoprotein(a) , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Humans , Lipoprotein(a)/genetics , Lipoprotein(a)/metabolism , RNA Interference , RNA, Small Interfering/adverse effects , RNA, Small Interfering/genetics , Risk Factors
7.
Circulation ; 144(7): 559-574, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34162223

ABSTRACT

BACKGROUND: Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS: We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS: Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS: Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.


Subject(s)
Aging/metabolism , Myocardium/metabolism , Phenylalanine/metabolism , Aging/pathology , Amino Acids/metabolism , Animals , Biomarkers , Biopterins/analogs & derivatives , Biopterins/pharmacology , Catalysis , Cellular Senescence/drug effects , Disease Models, Animal , Disease Susceptibility , Heart Diseases/etiology , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Models, Biological , Myocardium/pathology , Myocytes, Cardiac/metabolism , Phenylalanine/blood , Rats
8.
Proc Math Phys Eng Sci ; 477(2245): 20200462, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33642925

ABSTRACT

A central tool of nonlinear anelasticity is the multiplicative decomposition of the deformation tensor that assumes that the deformation gradient can be decomposed as a product of an elastic and an anelastic tensor. It is usually justified by the existence of an intermediate configuration. Yet, this configuration cannot exist in Euclidean space, in general, and the mathematical basis for this assumption is on unsatisfactory ground. Here, we derive a sufficient condition for the existence of global intermediate configurations, starting from a multiplicative decomposition of the deformation gradient. We show that these global configurations are unique up to isometry. We examine the result of isometrically embedding these configurations in higher-dimensional Euclidean space, and construct multiplicative decompositions of the deformation gradient reflecting these embeddings. As an example, for a family of radially symmetric deformations, we construct isometric embeddings of the resulting intermediate configurations, and compute the residual stress fields explicitly.

11.
J Mol Cell Cardiol ; 121: 287-296, 2018 08.
Article in English | MEDLINE | ID: mdl-30048712

ABSTRACT

Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Cardiomyopathy, Hypertrophic/genetics , Heart/physiopathology , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Animals , Cardiomyopathy, Hypertrophic/physiopathology , Disease Models, Animal , Gene Knock-In Techniques , Humans , Mice , Mutation , Sarcomeres/genetics
12.
Methods Mol Biol ; 1732: 581-619, 2018.
Article in English | MEDLINE | ID: mdl-29480501

ABSTRACT

In humans, dominant mutations in the gene encoding the regulatory γ2-subunit of AMP-activated protein kinase (PRKAG2) result in a highly penetrant phenotype dominated by cardiac features: left ventricular hypertrophy, ventricular pre-excitation, atrial tachyarrhythmia, cardiac conduction disease, and myocardial glycogen storage. The discovery of a link between the cell's fundamental energy sensor, AMPK, and inherited cardiac disease catalyzed intense interest into the biological role of AMPK in the heart. In this chapter, we provide an introduction to the spectrum of human disease resulting from pathogenic variants in PRKAG2, outlining its discovery, clinical genetics, and current perspectives on its pathogenesis and highlighting mechanistic insights derived through the evaluation of disease models. We also present a clinical perspective on the major components of the cardiomyopathy associated with mutations in PRKAG2, together with less commonly described extracardiac features, its prognosis, and principles of management.


Subject(s)
AMP-Activated Protein Kinases/genetics , Arrhythmias, Cardiac/genetics , Cardiomyopathy, Hypertrophic/genetics , Heart Failure/genetics , Myocardium/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/mortality , Arrhythmias, Cardiac/pathology , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/mortality , Cardiomyopathy, Hypertrophic/pathology , Disease Models, Animal , Electrocardiography , Female , Genetic Testing/methods , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , Male , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Mutation , Myocardium/pathology , Pedigree , Prognosis , Survival Rate
14.
FASEB J ; 32(5): 2587-2600, 2018 05.
Article in English | MEDLINE | ID: mdl-29269398

ABSTRACT

AMPK is a critical energy sensor and target for widely used antidiabetic drugs. In ß cells, elevated glucose concentrations lower AMPK activity, and the ablation of both catalytic subunits [ß-cell-specific AMPK double-knockout (ßAMPKdKO) mice] impairs insulin secretion in vivo and ß-cell identity. MicroRNAs (miRNAs) are small RNAs that silence gene expression that are essential for pancreatic ß-cell function and identity and altered in diabetes. Here, we have explored the miRNAs acting downstream of AMPK in mouse and human ß cells. We identified 14 down-regulated and 9 up-regulated miRNAs in ßAMPKdKO vs. control islets. Gene ontology analysis of targeted transcripts revealed enrichment in pathways important for ß-cell function and identity. The most down-regulated miRNA was miR-184 (miR-184-3p), an important regulator of ß-cell function and compensatory expansion that is controlled by glucose and reduced in diabetes. We demonstrate that AMPK is a potent regulator and an important mediator of the negative effects of glucose on miR-184 expression. Additionally, we reveal sexual dimorphism in miR-184 expression in mouse and human islets. Collectively, these data demonstrate that glucose-mediated changes in AMPK activity are central for the regulation of miR-184 and other miRNAs in islets and provide a link between energy status and gene expression in ß cells.-Martinez-Sanchez, A., Nguyen-Tu, M.-S., Cebola, I., Yavari, A., Marchetti, P., Piemonti, L., de Koning, E., Shapiro, A. M. J., Johnson, P., Sakamoto, K., Smith, D. M., Leclerc, I., Ashrafian, H., Ferrer, J., Rutter, G. A. MiR-184 expression is regulated by AMPK in pancreatic islets.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus/metabolism , Gene Expression Regulation , Insulin-Secreting Cells/metabolism , MicroRNAs/biosynthesis , AMP-Activated Protein Kinases/genetics , Animals , Cell Line , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Energy Metabolism/genetics , Female , Glucose/genetics , Glucose/metabolism , Humans , Insulin-Secreting Cells/pathology , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Sex Characteristics
15.
Nat Commun ; 8(1): 1258, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097735

ABSTRACT

AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αßγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia). Here, we show that γ2 AMPK activation downregulates fundamental sinoatrial cell pacemaker mechanisms to lower heart rate, including sarcolemmal hyperpolarization-activated current (I f) and ryanodine receptor-derived diastolic local subsarcolemmal Ca2+ release. In contrast, loss of γ2 AMPK induces a reciprocal phenotype of increased heart rate, and prevents the adaptive intrinsic bradycardia of endurance training. Our results reveal that in mammals, for which heart rate is a key determinant of cardiac energy demand, AMPK functions in an organ-specific manner to maintain cardiac energy homeostasis and determines cardiac physiological adaptation to exercise by modulating intrinsic sinoatrial cell behavior.


Subject(s)
AMP-Activated Protein Kinases/genetics , Bradycardia/genetics , Calcium/metabolism , Heart Rate/genetics , Sarcolemma/metabolism , Sinoatrial Node/metabolism , Adult , Animals , Bradycardia/metabolism , Electrocardiography, Ambulatory , Exercise , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron, Transmission , Mutation , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Physical Conditioning, Animal , Physical Endurance , Ryanodine Receptor Calcium Release Channel/metabolism , Sinoatrial Node/pathology
16.
Adv Drug Deliv Rev ; 120: 142-167, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28916499

ABSTRACT

Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.


Subject(s)
Cellular Reprogramming/physiology , Myocytes, Cardiac/physiology , Animals , Cardiovascular Diseases/therapy , Guided Tissue Regeneration , Humans , Induced Pluripotent Stem Cells/physiology
17.
Cell Physiol Biochem ; 42(1): 254-268, 2017.
Article in English | MEDLINE | ID: mdl-28535507

ABSTRACT

AIMS: Stem cell-based regenerative therapies for the treatment of ischemic myocardium are currently a subject of intensive investigation. A variety of cell populations have been demonstrated to be safe and to exert some positive effects in human Phase I and II clinical trials, however conclusive evidence of efficacy is still lacking. While the relevance of animal models for appropriate pre-clinical safety and efficacy testing with regard to application in Phase III studies continues to increase, concerns have been expressed regarding the validity of the mouse model to predict clinical results. Against the background that hundreds of preclinical studies have assessed the efficacy of numerous kinds of cell preparations - including pluripotent stem cells - for cardiac repair, we undertook a systematic re-evaluation of data from the mouse model, which initially paved the way for the first clinical trials in this field. METHODS AND RESULTS: A systematic literature screen was performed to identify publications reporting results of cardiac stem cell therapies for the treatment of myocardial ischemia in the mouse model. Only peer-reviewed and placebo-controlled studies using magnet resonance imaging (MRI) for left ventricular ejection fraction (LVEF) assessment were included. Experimental data from 21 studies involving 583 animals demonstrate a significant improvement in LVEF of 8.59%+/- 2.36; p=.012 (95% CI, 3.7-13.8) compared with control animals. CONCLUSION: The mouse is a valid model to evaluate the efficacy of cell-based advanced therapies for the treatment of ischemic myocardial damage. Further studies are required to understand the mechanisms underlying stem cell based improvement of cardiac function after ischemia.


Subject(s)
Myocardial Infarction/therapy , Stem Cell Transplantation , Animals , Cell- and Tissue-Based Therapy , Databases, Factual , Disease Models, Animal , Heart/physiopathology , Humans , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Regeneration , Ventricular Function, Left/physiology
19.
Proc Math Phys Eng Sci ; 472(2195): 20160659, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27956887

ABSTRACT

In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids.

20.
Am J Physiol Endocrinol Metab ; 311(4): E706-E719, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27577855

ABSTRACT

AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory ß (ß1 and ß2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 µM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Benzimidazoles/pharmacology , Benzoates/pharmacology , Enzyme Activators/pharmacology , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/drug effects , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/drug effects , Aminoimidazole Carboxamide/pharmacology , Animals , Antibodies, Blocking/pharmacology , Humans , In Vitro Techniques , Isoenzymes , Mice , Mice, Knockout , Muscle Contraction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL