Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Environ Sci Pollut Res Int ; 30(5): 11600-11616, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36097310

ABSTRACT

Delhi has been identified as one of the highly polluted cities in the world and recently associated with the highest population weighted PM2.5 concentration. However, the unavailability of the health risk estimations using long-term data for Indian cities has been pointed out as a hurdle in performing the correct assessment. The present work estimated deposition of particles in different regions of respiratory systems (head airway = 67% deposition for 2.5 µm particles; tracheo-bronchiolar (TB) = 73% deposition for 1.0 µm particles; alveolar (AL) = 17% deposition for 0.5 µm, 0.25 µm, and < 0.25 µm particles) using PM samples collected at a breathing height of 1.5 m near the major ring road in New Delhi (India). The calculated risk index (RI) varied considerably between winter (1.21 ± 0.26 to 1.33 ± 0.50) and pre-monsoon-southwest monsoon months (0.34 ± 0.08 to 0.96 ± 0.27). Respiratory deposition dose of nanosized particles (≤ 500 nm) in the alveoli region of the lung was found to be considerable (35%) indicating the need for understanding the role of these particles in posing health risk. Although the calculated values of risk metric for exposures of PM-associated metals indicated no risk to IIT Delhi population (hazard quotient < 1 and excess risk of getting cancer < 10-6-10-9), continuous monitoring for particles of different sizes at inhalation height are required for protecting human health.


Subject(s)
Air Pollutants , Particulate Matter , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Cities , Lung , India , Particle Size , Environmental Monitoring , Inhalation Exposure/analysis
3.
Environ Sci Pollut Res Int ; 28(32): 43459-43475, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33835344

ABSTRACT

In this study, the air pollution-related quality of life (AP-QOL) questionnaire was carried out in two geographically and economically different groups including New Delhi (Megacity) and Hamirpur, Himachal Pradesh (town), and APE scores were linked with respiratory and cardiovascular illness. The APE-Score was developed by AP-QOL questionnaire responses using Delphi technique and further analyzed using principal component analysis (PCA). For reliability of APE-Score and AP-QOL questionnaire, α-Cronbach's test and basic statistics were performed. The linear mixed-effect model and odds ratios were used to evaluate air pollution exposure and health outcomes. Overall, 720 academicians and 276 security guards were invited to participate in the questionnaire. Cronbach's α coefficients ranged from 0.70 to 0.84 indicated significant reliability in the AP-QOL questionnaire conducted in this study. Substantial variation in respiratory symptoms and their medical history were found - 76.9% ([95% confidential interval (CI)]: (- 83.8, - 66.9) (p < 0.05)) and - 28.6% (95% CI: (- 37.8, - 18.0) (p < 0.05)), respectively, with interquartile range (IQR) increase of APE score. The odds ratios (ORs) of respiratory medical history (MH Res.) showed a significant increase from 1.01 to 1.35 for low to high air pollution exposure in the academic group of IIT Delhi. Interestingly, for an academic group of NITH, the ORs for medical history of cardiovascular (MH Card.) showed an increase from 1.08 to 1.13 for low to high APE which was not the case for IIT Delhi academicians.


Subject(s)
Air Pollution , Quality of Life , Humans , Reproducibility of Results , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL