Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 21(10): 4152-4159, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33982572

ABSTRACT

Nanopores embedded in two-dimensional (2D) nanomaterials are a promising emerging technology for osmotic power generation. Here, coupling our new AFM-based pore fabrication approach, tip-controlled local breakdown (TCLB), with a hybrid membrane formed by coating silicon nitride (SiN) with hexagonal boron nitride (hBN), we show that high osmotic power density can be obtained in systems that do not possess the thinness of atomic monolayers. In our approach, the high osmotic performance arises from charge separation induced by the highly charged hBN surface rather than charge on the inner pore wall. Moreover, exploiting TCLB's capability of producing sub 10 nm pore arrays, we investigate the effects of pore-pore interaction on the overall power density. We find that an optimum pore-to-pore spacing of ∼500 nm is required to maintain an efficient selective transport mechanism.

2.
Nano Lett ; 19(9): 6400-6409, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31429571

ABSTRACT

Atomically thin porous graphene is emerging as one of the most promising candidates for next-generation membrane material owing to the ultrahigh permeation. However, the transport selectivity relies on the precise control over pore size and shape which considerably compromises the scalability. Here, we study electrolyte permeation through a sheet of large-area, porous graphene, with relatively large pore sizes of 20 ± 10 nm. Counterintuitively, a high degree of salt rejection is observed by electrostatic gating, reducing the diffusive flux by up to 1 order of magnitude. We systematically investigate the effects of salt concentration and species, including developing a theory to model the electrolyte diffusion through a nanopore drilled in a sheet of gated graphene. The interplay between graphene quantum capacitance and the electrical double layer is found to selectively modulate the anionic and cationic transport paths, creating voltage-dependent electrochemical barriers when the pore size is comparable to the Debye length. Our findings reveal a new degree of freedom regulating electrolyte permeation through porous two-dimensional materials, complementary to the pore size design and engineering.

3.
Phys Rev E ; 98(1-1): 012605, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110733

ABSTRACT

The number of precise conductance measurements in nanopores is quickly growing. To clarify the dominant mechanisms at play and facilitate the characterization of such systems for which there is still no clear consensus, we propose an analytical approach to the ionic conductance in nanopores that takes into account (i) electro-osmotic effects, (ii) flow slip at the pore surface for hydrophobic nanopores, (iii) a component of the surface charge density that is modulated by the reservoir pH and salt concentration c_{s} using a simple charge regulation model, and (iv) a fixed surface charge density that is unaffected by pH and c_{s}. Limiting cases are explored for various ranges of salt concentration and our formula is used to fit conductance experiments found in the literature for carbon nanotubes. This approach permits us to catalog the different possible transport regimes and propose an explanation for the wide variety of currently known experimental behavior for the conductance versus c_{s}.

4.
Nanoscale ; 9(33): 11976-11986, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28792055

ABSTRACT

Ionic transport through single-walled carbon nanotubes (SWCNTs) is promising for many applications but remains both experimentally challenging and highly debated. Here we report ionic current measurements through microfluidic devices containing one or several SWCNTs of diameter of 1.2 to 2 nm unexpectedly showing a linear or a voltage-activated I-V dependence. Transition from an activated to a linear behavior, and stochastic fluctuations between different current levels were notably observed. For linear devices, the high conductance confirmed with different chloride salts indicates that the nanotube/water interface exhibits both a high surface charge density and flow slippage, in agreement with previous reports. In addition, the sublinear dependence of the conductance on the salt concentration points toward a charge-regulation mechanism. Theoretical modelling and computer simulations show that the voltage-activated behavior can be accounted for by the presence of local energy barriers along or at the ends of the nanotube. Raman spectroscopy reveals strain fluctuations along the tubes induced by the polymer matrix but displays insufficient doping or variations of doping to account for the apparent surface charge density and energy barriers revealed by ion transport measurements. Finally, experimental evidence points toward environment-sensitive chemical moieties at the nanotube mouths as being responsible for the energy barriers causing the activated transport of ions through SWCNTs within this diameter range.

SELECTION OF CITATIONS
SEARCH DETAIL