Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(26): e2402200121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885384

ABSTRACT

Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.


Subject(s)
Holography , Neurons , Animals , Holography/methods , Mice , Neurons/physiology , Wearable Electronic Devices , Ultrasonic Waves , Corpus Striatum/physiology , Brain/physiology
2.
Adv Drug Deliv Rev ; 211: 115363, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906479

ABSTRACT

Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.

3.
Nat Metab ; 5(5): 789-803, 2023 05.
Article in English | MEDLINE | ID: mdl-37231250

ABSTRACT

Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.


Subject(s)
Hypothermia , TRPM Cation Channels , Torpor , Rats , Mice , Animals , Rodentia , Hypothermia/chemically induced , Torpor/physiology , Body Temperature/physiology , Brain , TRPM Cation Channels/adverse effects
4.
Proc Natl Acad Sci U S A ; 120(21): e2212933120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186852

ABSTRACT

The glymphatic system is a perivascular fluid transport system for waste clearance. Glymphatic transport is believed to be driven by the perivascular pumping effect created by the pulsation of the arterial wall caused by the cardiac cycle. Ultrasound sonication of circulating microbubbles (MBs) in the cerebral vasculature induces volumetric expansion and contraction of MBs that push and pull on the vessel wall to generate a MB pumping effect. The objective of this study was to evaluate whether glymphatic transport can be mechanically manipulated by focused ultrasound (FUS) sonication of MBs. The glymphatic pathway in intact mouse brains was studied using intranasal administration of fluorescently labeled albumin as fluid tracers, followed by FUS sonication at a deep brain target (thalamus) in the presence of intravenously injected MBs. Intracisternal magna injection, the conventional technique used in studying glymphatic transport, was employed to provide a comparative reference. Three-dimensional confocal microscopy imaging of optically cleared brain tissue revealed that FUS sonication enhanced the transport of fluorescently labeled albumin tracer in the perivascular space (PVS) along microvessels, primarily the arterioles. We also obtained evidence of FUS-enhanced penetration of the albumin tracer from the PVS into the interstitial space. This study revealed that ultrasound combined with circulating MBs could mechanically enhance glymphatic transport in the brain.


Subject(s)
Glymphatic System , Microbubbles , Mice , Animals , Brain/diagnostic imaging , Brain/metabolism , Glymphatic System/diagnostic imaging , Glymphatic System/metabolism , Ultrasonography , Albumins/metabolism
5.
STAR Protoc ; 4(1): 102132, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36861835

ABSTRACT

Existing protocols of focused ultrasound (FUS) combined with microbubble-mediated blood-brain barrier (BBB) opening (FUS-BBBO) in preclinical research require expensive ultrasound equipment and complex operating procedures. We developed a low-cost, easy-to-use, and precise FUS device for small animal models in preclinical research. Here, we provide a detailed protocol for building the FUS transducer, attaching the transducer to a stereotactic frame for precise brain targeting, applying the integrated FUS device to perform FUS-BBBO in mice, and evaluating the FUS-BBBO outcome. For complete details on the use and execution of this protocol, please refer to Hu et al. (2022).1.


Subject(s)
Blood-Brain Barrier , Brain , Mice , Animals , Brain/diagnostic imaging , Brain/surgery , Ultrasonography/methods , Microbubbles , Biological Transport
6.
EBioMedicine ; 84: 104277, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36152518

ABSTRACT

BACKGROUND: Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood-brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. METHODS: Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. FINDINGS: FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. INTERPRETATION: Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. FUNDING: National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861.


Subject(s)
Blood-Brain Barrier , Receptors, CXCR4 , Administration, Intranasal , Animals , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Brain/metabolism , Mice , Receptors, CXCR4/metabolism , Tissue Distribution , United States
7.
Neurooncol Adv ; 4(1): vdac059, 2022.
Article in English | MEDLINE | ID: mdl-35733516

ABSTRACT

Background: Leptomeningeal disease and hydrocephalus are present in up to 30% of patients with diffuse intrinsic pontine glioma (DIPG), however there are no animal models of cerebrospinal fluid (CSF) dissemination. As the tumor-CSF-ependymal microenvironment may play an important role in tumor pathogenesis, we identified characteristics of the Nestin-tumor virus A (Nestin-Tva) genetically engineered mouse model that make it ideal to study the interaction of tumor cells with the CSF and its associated pathways with implications for the development of treatment approaches to address CSF dissemination in DIPG. Methods: A Nestin-Tva model of DIPG utilizing the 3 most common DIPG genetic alterations (H3.3K27M, PDGF-B, and p53) was used for this study. All mice underwent MR imaging and a subset underwent histopathologic analysis with H&E and immunostaining. Results: Tumor dissemination within the CSF pathways (ventricles, leptomeninges) from the subependyma was present in 76% (25/33) of mice, with invasion of the choroid plexus, disruption of the ciliated ependyma and regional subependymal fluid accumulation. Ventricular enlargement consistent with hydrocephalus was present in 94% (31/33). Ventricle volume correlated with region-specific transependymal CSF flow (periventricular T2 signal), localized anterior to the lateral ventricles. Conclusions: This is the first study to report CSF pathway tumor dissemination associated with subependymal tumor in an animal model of DIPG and is representative of CSF dissemination seen clinically. Understanding the CSF-tumor-ependymal microenvironment has significant implications for treatment of DIPG through targeting mechanisms of tumor spread within the CSF pathways.

8.
IEEE Trans Biomed Eng ; 69(11): 3449-3459, 2022 11.
Article in English | MEDLINE | ID: mdl-35476579

ABSTRACT

OBJECTIVE: Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest brainstem tumor in children. Focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) is a promising technique for overcoming the frequently intact blood-brain barrier (BBB) in DIPG to enhance therapeutic drug delivery to the brainstem. Since DIPG is highly diffusive, large-volume FUS-BBBO is needed to cover the entire tumor region. The objective of this study was to determine the optimal treatment strategy to achieve efficient and homogeneous large-volume BBBO at the brainstem for the delivery of an immune checkpoint inhibitor, anti-PD-L1 antibody (aPD-L1). METHODS: Two critical parameters for large-volume FUS-BBBO, multi-point sonication pattern (interleaved vs. serial) and microbubble injection method (bolus vs. infusion), were evaluated by treating mice with four combinations of these two parameters. 2D Passive cavitation imaging (PCI) was performed for monitoring the large-volume sonication. RESULTS: Interleaved sonication combined with bolus injection of microbubbles resulted in 1.29 to 2.06 folds higher efficiency than other strategies as evaluated by Evans blue extravasation. The average coefficient of variation of the Evans blue delivery was 0.66 for interleaved sonication with bolus injection, compared to 0.68-0.88 for all other strategies. Similar trend was also observed in the quantified total cavitation dose and coefficient of variance of the cavitation dose. This strategy was then applied to deliver fluorescently labeled aPD-L1 which was quantified using fluorescence imaging. A strong segmented linear correlation (R2 = 0.81) was found between the total cavitation dose and the total fluorescence intensity of aPD-L1 delivered at different sonication pressures (0.15 MPa, 0.30 MPa, and 0.45 MPa). SIGNIFICANCE: Findings from this study suggest that efficient and homogeneous large-volume FUS-BBBO can be achieved by interleaved sonication combined with bolus injection of microbubbles, and the efficiency and homogeneity can be monitored by PCI.


Subject(s)
Microbubbles , Sonication , Animals , Mice , Blood-Brain Barrier , Drug Delivery Systems/methods , Evans Blue , Immune Checkpoint Inhibitors , Sonication/methods
9.
Methods Mol Biol ; 2394: 501-513, 2022.
Article in English | MEDLINE | ID: mdl-35094343

ABSTRACT

The blood-brain barrier (BBB) is the major barrier for brain drug delivery and limits the treatment options for central nervous system diseases. To circumvent the BBB, we introduced the focused ultrasound-mediated intranasal brain drug delivery (FUSIN) technique. FUSIN utilizes the nasal route for direct nose-to-brain drug administration, bypassing the BBB and minimizing systemic exposure. It also uses the transcranial application of ultrasound energy focused at a targeted brain region to induce microbubble cavitation, which enhances the transport of intranasally administered agents at the FUS-targeted brain location. FUSIN is unique in that it can achieve noninvasive and localized brain drug delivery with minimized systemic toxicity. The goal of this chapter is to provide a detailed protocol for FUSIN delivery to the mouse brain.


Subject(s)
Brain , Receptors, CXCR4 , Administration, Intranasal , Animals , Blood-Brain Barrier , Brain/physiology , Drug Delivery Systems/methods , Mice , Microbubbles
10.
J Cereb Blood Flow Metab ; 42(1): 3-26, 2022 01.
Article in English | MEDLINE | ID: mdl-34551608

ABSTRACT

Focused ultrasound combined with circulating microbubbles (FUS+MB) can transiently enhance blood-brain barrier (BBB) permeability at targeted brain locations. Its great promise in improving drug delivery to the brain is reflected by a rapidly growing number of clinical trials using FUS+MB to treat various brain diseases. As the clinical applications of FUS+MB continue to expand, it is critical to have a better understanding of the molecular and cellular effects induced by FUS+MB to enhance the efficacy of current treatment and enable the discovery of new therapeutic strategies. Existing studies primarily focus on FUS+MB-induced effects on brain endothelial cells, the major cellular component of BBB. However, bioeffects induced by FUS+MB expand beyond the BBB to cells surrounding blood vessels, including astrocytes, microglia, and neurons. Together these cell types comprise the neurovascular unit (NVU). In this review, we examine cell-type-specific bioeffects of FUS+MB on different NVU components, including enhanced permeability in endothelial cells, activation of astrocytes and microglia, as well as increased intraneuron protein metabolism and neuronal activity. Finally, we discuss knowledge gaps that must be addressed to further advance clinical applications of FUS+MB.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Delivery Systems , Microbubbles/therapeutic use , Endothelial Cells/metabolism , Humans
11.
Radiology ; 300(3): E352, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34424790
12.
MethodsX ; 8: 101266, 2021.
Article in English | MEDLINE | ID: mdl-34434788

ABSTRACT

The blood-brain barrier (BBB) is the major obstacle for brain drug delivery and limits the treatment options for central nervous system diseases. To circumvent the BBB, we introduce focused ultrasound-mediated intranasal brain drug delivery (FUSIN). FUSIN utilizes the nasal route for direct nose-to-brain drug administration, bypassing the BBB and minimizing systemic exposure to the major organs, such as heart, lung, liver, and kidney [1]. It also uses transcranial ultrasound energy focused at a targeted brain region to induce microbubble cavitation, enhancing the transport of intranasally administered agents at the FUS-targeted brain location. FUSIN is unique because it can achieve noninvasive and localized brain drug delivery with minimized systemic toxicity to other major organs. The goal of this paper is to provide a detailed protocol for FUSIN delivery to the mouse brain.•FUSIN delivery utilizes the nose-to-brain pathway for brain drug delivery.•FUSIN utilizes FUS combined with microbubble to significantly enhance the delivery efficiency of intranasally administered drugs to the FUS targeted brain regions.•FUSIN achieves efficient brain delivery with minimized systemic exposure in the major organs.

13.
Radiology ; 300(3): 681-689, 2021 09.
Article in English | MEDLINE | ID: mdl-34227880

ABSTRACT

Background Focused ultrasound combined with microbubbles has been used in clinical studies for blood-brain barrier (BBB) opening in conjunction with MRI. However, the impact of the static magnetic field generated by an MRI scanner on the BBB opening outcome has not been evaluated. Purpose To determine the relationship of the static magnetic field of an MRI scanner on focused ultrasound combined with microbubble-induced BBB opening. Materials and Methods Thirty wild-type mice were divided into four groups. Mice from different groups were sonicated with focused ultrasound in different static magnetic fields (approximately 0, 1.5, 3.0, and 4.7 T), with all other experimental parameters kept the same. Focused ultrasound sonication was performed after intravenous injection of microbubbles. Microbubble cavitation activity, the fundamental -physical mechanism underlying focused ultrasound BBB opening, was monitored with passive cavitation detection. After sonication, contrast-enhanced T1-weighted MRI was performed to assess BBB opening outcome. Intravenously injected Evans blue was used as a model agent to evaluate trans-BBB delivery efficiency. Results The microbubble cavitation dose decreased by an average of 2.1 dB at 1.5 T (P = .05), 2.9 dB at 3.0 T (P = .01), and 3.0 dB at 4.7 T (P = .01) compared with that outside the magnetic field (approximately 0 T). The static magnetic field of an MRI scanner decreased BBB opening volume in mice by 3.2-fold at 1.5 T (P < .001), 4.5-fold at 3.0 T (P < .001), and 11.6-fold at 4.7 T (P <.001) compared with mice treated outside the magnetic field. It also decreased Evans blue trans-BBB delivery 1.4-fold at 1.5 T (P = .009), 1.6-fold at 3.0 T (P < .001), and 1.9-fold at 4.7 T (P < .001). Conclusion Static magnetic fields dampened microbubble cavitation activity and decreased trans-blood-brain barrier (BBB) delivery by focused ultrasound combined with microbubble-induced BBB opening. © RSNA, 2021 An earlier incorrect version of this article appeared online. This article was corrected on July 8, 2021.


Subject(s)
Blood-Brain Barrier/physiology , Magnetic Fields , Magnetic Resonance Imaging/methods , Sonication/methods , Animals , Blood-Brain Barrier/diagnostic imaging , Contrast Media , Female , Magnetic Resonance Imaging, Interventional , Mice , Mice, Inbred BALB C , Microbubbles , Models, Animal , Permeability
14.
Article in English | MEDLINE | ID: mdl-34166187

ABSTRACT

Cavitation is the fundamental physical mechanism of various focused ultrasound (FUS)-mediated therapies in the brain. Accurately knowing the three-dimensional (3-D) location of cavitation in real-time can improve the targeting accuracy and avoid off-target tissue damage. Existing techniques for 3-D passive transcranial cavitation detection require the use of expensive and complicated hemispherical phased arrays with 128 or 256 elements. The objective of this study was to investigate the feasibility of using four sensors for transcranial 3-D localization of cavitation. Differential microbubble cavitation detection combined with the time difference of arrival algorithm was developed for the localization using the four sensors. Numerical simulation using k-Wave toolbox was performed to validate the proposed method for transcranial cavitation source localization. The sensors with a center frequency of 2.25 MHz and a 6 dB bandwidth of 1.39 MHz were used to locate cavitation generated by FUS (500 kHz) sonication of microbubbles that were injected into a tube positioned inside an ex vivo human skullcap. Cavitation emissions from the microbubbles were detected transcranially using the four sensors. Both simulation and experimental studies found that the proposed method achieved accurate 3-D cavitation localization. When the cavitation source was located within 30 mm from the geometric center of the sensor network, the accuracy of the localization method with the skull was measured to be 1.9±1.0 mm, which was not significantly different from that without the skull (1.7 ± 0.5 mm). The accuracy decreased as the cavitation source was away from the geometric center of the sensor network. It also decreased as the pulse length increased. Its accuracy was not significantly affected by the sensor position relative to the skull. In summary, four sensors combined with the proposed localization algorithm offer a simple approach for 3-D transcranial cavitation localization.


Subject(s)
Microbubbles , Skull , Algorithms , Brain , Humans , Skull/diagnostic imaging , Sonication
15.
Brain Stimul ; 14(4): 790-800, 2021.
Article in English | MEDLINE | ID: mdl-33989819

ABSTRACT

BACKGROUND: Critical advances in the investigation of brain functions and treatment of brain disorders are hindered by our inability to selectively target neurons in a noninvasive manner in the deep brain. OBJECTIVE: This study aimed to develop sonothermogenetics for noninvasive, deep-penetrating, and cell-type-specific neuromodulation by combining a thermosensitive ion channel TRPV1 with focused ultrasound (FUS)-induced brief, non-noxious thermal effect. METHODS: The sensitivity of TRPV1 to FUS sonication was evaluated in vitro. It was followed by in vivo assessment of sonothermogenetics in the activation of genetically defined neurons in the mouse brain by two-photon calcium imaging. Behavioral response evoked by sonothermogenetic stimulation at a deep brain target was recorded in freely moving mice. Immunohistochemistry staining of ex vivo brain slices was performed to evaluate the safety of FUS sonication. RESULTS: TRPV1 was found to be an ultrasound-sensitive ion channel. FUS sonication at the mouse brain in vivo selectively activated neurons that were genetically modified to express TRPV1. Temporally precise activation of TRPV1-expressing neurons was achieved with its success rate linearly correlated with the peak temperature within the FUS-targeted brain region as measured by in vivo magnetic resonance thermometry. FUS stimulation of TRPV1-expressing neurons at the striatum repeatedly evoked locomotor behavior in freely moving mice. FUS sonication was confirmed to be safe based on inspection of neuronal integrity, inflammation, and apoptosis markers. CONCLUSIONS: This noninvasive and cell-type-specific neuromodulation approach with the capability to stimulate deep brain has the promise to advance the study of the intact nervous system and uncover new ways to treat neurological disorders.


Subject(s)
Brain , Nervous System Diseases , Animals , Brain/diagnostic imaging , Magnetic Resonance Spectroscopy , Mice , Neurons , Sonication
16.
Pharmaceutics ; 13(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535531

ABSTRACT

Immune checkpoint inhibitors have great potential for the treatment of gliomas; however, their therapeutic efficacy has been partially limited by their inability to efficiently cross the blood-brain barrier (BBB). The objective of this study was to evaluate the capability of focused-ultrasound-mediated intranasal brain drug delivery (FUSIN) in achieving the locally enhanced delivery of anti-programmed cell death-ligand 1 antibody (aPD-L1) to the brain. Both non-tumor mice and mice transcranially implanted with GL261 glioma cells at the brainstem were used in this study. aPD-L1 was labeled with a near-infrared fluorescence dye (IRDye 800CW) and administered to mice through the nasal route to the brain, followed by focused ultrasound sonication in the presence of systemically injected microbubbles. FUSIN enhanced the accumulation of aPD-L1 at the FUS-targeted brainstem by an average of 4.03- and 3.74-fold compared with intranasal (IN) administration alone in the non-tumor mice and glioma mice, respectively. Immunohistochemistry staining found that aPD-L1 was mainly located within the perivascular spaces after IN delivery, while FUSIN further enhanced the penetration depth and delivery efficiency of aPD-L1 to the brain parenchyma. The delivered aPD-L1 was found to be colocalized with the tumor cells after FUSIN delivery to the brainstem glioma. These findings suggest that FUSIN is a promising technique to enhance the delivery of immune checkpoint inhibitors to gliomas.

17.
Front Phys ; 92021 Mar.
Article in English | MEDLINE | ID: mdl-37994329

ABSTRACT

Immune checkpoint inhibitors (ICIs) are designed to reinvigorate antitumor immune responses by interrupting inhibitory signaling pathways and promoting the immune-mediated elimination of malignant cells. Although ICI therapy has transformed the landscape of cancer treatment, only a subset of patients achieve a complete response. Focused ultrasound (FUS) is a noninvasive, nonionizing, deep penetrating focal therapy that has great potential to improve the efficacy of ICIs in solid tumors. Five FUS modalities have been incorporated with ICIs to explore their antitumor effects in preclinical studies, namely, high-intensity focused ultrasound (HIFU) thermal ablation, HIFU hyperthermia, HIFU mechanical ablation, ultrasound-targeted microbubble destruction (UTMD), and sonodynamic therapy (SDT). The enhancement of the antitumor immune responses by these FUS modalities demonstrates the great promise of FUS as a transformative cancer treatment modality to improve ICI therapy. Here, this review summarizes these emerging applications of FUS modalities in combination with ICIs. It discusses each FUS modality, the experimental protocol for each combination strategy, the induced immune effects, and therapeutic outcomes.

18.
J Control Release ; 328: 276-285, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32871204

ABSTRACT

Focused ultrasound-mediated intranasal (FUSIN) delivery is a recently proposed technique that bypasses the blood-brain barrier to achieve noninvasive and localized brain drug delivery. The goal of this study was to characterize FUSIN drug delivery outcome in mice with regard to its dependency on several critical experimental factors, including the time interval between IN administration and FUS sonication (Tlag1), the FUS pressure, and the time for sacrificing the mice post-FUS (Tlag2). Wild-type mice were treated by FUSIN delivery of near-infrared fluorescent dye-labeled bovine serum albumin (800CW-BSA, used as a model agent). 800CW-BSA was intranasally administered to the mice in vivo, followed by intravenous injection of microbubbles and FUS sonication at the brainstem. Fluorescence imaging of ex vivo mouse brain slices was used to quantify the delivery outcomes of 800CW-BSA. Major organs, along with the nasal tissue and trigeminal nerve, were harvested to assess the biodistribution of 800CW-BSA. The delivery outcome of 800CW-BSA was the highest at the brainstem when Tlag1 was 0.5 h, which was on average 24.5-fold, 5.4-fold, and 21.6-fold higher than those of the IN only, Tlag1 = 1.5 h, and Tlag1 = 4.0 h, respectively. The FUSIN delivery outcome at the lowest pressure level, 0.43 MPa, was on average 1.8-fold and 3.7-fold higher than those at 0.56 MPa and 0.70 MPa, respectively. The mean concentration of 800CW-BSA in the brainstem after FUSIN delivery decreased from 0.5 h to 4.0 h post-FUS. The accumulation of 800CW-BSA was low in the heart, lung, spleen, kidneys, and liver, but high in the stomach and intestines. This study revealed the unique characteristics of FUSIN as a noninvasive, efficient, and localized brain drug delivery technique.


Subject(s)
Blood-Brain Barrier , Microbubbles , Animals , Brain , Brain Stem , Drug Delivery Systems , Mice , Tissue Distribution
19.
J Biomed Opt ; 25(2): 1-13, 2020 02.
Article in English | MEDLINE | ID: mdl-32112540

ABSTRACT

SIGNIFICANCE: The blood-brain barrier (BBB) is a major obstacle to detecting and treating brain tumors. Overcoming this challenge will facilitate the early and accurate detection of brain lesions and guide surgical resection of tumors. AIM: We generated an orthotopic brain tumor model that simulates the pathophysiology of gliomas at early stages; determine the BBB integrity and breakdown over the time course of tumor progression using generic and cancer-targeted near-infrared (NIR) fluorescent molecular probes. APPROACH: We developed an intracranial tumor xenograft model that rapidly reestablished BBB integrity and monitored tumor progression by bioluminescence imaging. Sham control mice were injected with phosphate-buffered saline only. Fluorescence molecular tomography (FMT) was used to quantify the uptake of tumor-targeted and passive NIR fluorescent imaging agents in orthotopic glioma (U87-GL-GFP PDE7B H217Q cells) tumor model. Cancer-induced and transient (with focused ultrasound, FUS) disruption of BBB integrity was monitored with NIR fluorescent dyes. RESULTS: Stereotactic injection of 50,000 cells into mouse brain allowed rapid reestablishment of BBB integrity within a week, as determined by the inability of both tumor-targeted and generic NIR imaging agents to extravasate into the brain. Tumor-induced BBB disruption was observed 7 weeks after tumor implantation. FUS achieved a similar effect at any time point after reestablishing BBB integrity. While tumor uptake and retention of the passive NIR dye, indocyanine green, was negligible, both actively tumor-targeting agents exhibited selective accumulation in the tumor region. The tumor-targeting molecular probe that clears rapidly from nontumor brain tissue exhibits higher contrast than the analogous vascular-targeting agent and helps delineate tumors from sham control. CONCLUSIONS: We highlight the utility of FMT imaging for longitudinal assessment of brain tumors and the interplay between the stages of BBB disruption and molecular probe retention in tumors, with potential application to other neurological diseases.


Subject(s)
Blood-Brain Barrier/physiology , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Microscopy, Fluorescence/methods , Tomography, Optical/methods , Animals , Brain Neoplasms/pathology , Coloring Agents/administration & dosage , Contrast Media , Disease Models, Animal , Female , Glioma/pathology , Green Fluorescent Proteins/administration & dosage , Image Processing, Computer-Assisted/methods , Indocyanine Green/administration & dosage , Luminescent Agents/administration & dosage , Mice , Mice, Nude , Neoplasm Transplantation , Transplantation, Heterologous
20.
ACS Appl Nano Mater ; 3(11): 11129-11134, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-34337344

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is an invasive pediatric brainstem malignancy exclusively in children without effective treatment due to the often-intact blood-brain tumor barrier (BBTB), an impediment to the delivery of therapeutics. Herein, we used focused ultrasound (FUS) to transiently open BBTB and delivered radiolabeled nanoclusters (64Cu-CuNCs) to tumors for positron emission tomography (PET) imaging and quantification in a mouse DIPG model. First, we optimized FUS acoustic pressure to open the blood-brain barrier (BBB) for effective delivery of 64Cu-CuNCs to pons in wildtype mice. Then the optimized FUS pressure was used to deliver radiolabeled agents in DIPG mouse. Magnetic resonance imaging (MRI)-guided FUS-induced BBTB opening was demonstrated using a low molecular weight, short-lived 68Ga-DOTA-ECL1i radiotracer and PET/CT before and after treatment. We then compared the delivery efficiency of 64Cu-CuNCs to DIPG tumor with and without FUS treatment and demonstrated the FUS-enhanced delivery and time-dependent diffusion of 64Cu-CuNCs within the tumor.

SELECTION OF CITATIONS
SEARCH DETAIL
...