Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37966569

ABSTRACT

Administration of bolus intravenous fluids, common in pre-hospital and hospitalised patients, is associated with increased lung vascular permeability and mortality outside underlying disease states. In our laboratory, the induction of lung injury and oedema through rapid administration of intravenous fluid in rats was reduced by a non-specific antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. The aims of this study were to determine the effect of selective TRPV4 inhibition on fluid-induced lung injury (FILI) and compare the potency of FILI inhibition to that of an established model of TRPV4 agonist-induced lung oedema. In a series of experiments, rats received specific TRPV4 inhibitor (GSK2789917) at high (15 µg/kg), medium (5 µg/kg) or low (2 µg/kg) dose or vehicle prior to induction of lung injury by intravenous infusion of TRPV4 agonist (GSK1016790) or saline. GSK1016790 significantly increased lung wet weight/body weight ratio by 96% and lung wet-to-dry weight ratio by 43% in vehicle pre-treated rats, which was inhibited by GSK2789917 in a dose-dependent manner (IC50 = 3 ng/mL). Similarly, in a single-dose study, bolus saline infusion significantly increased lung wet weight/body weight by 17% and lung wet-to-dry weight ratio by 15%, which was attenuated by high dose GSK2789917. However, in a final GSK2789917 dose-response study, inhibition did not reach significance and an inhibitory potency was not determined due to the lack of a clear dose-response. In the FILI model, TRPV4 may have a role in lung injury induced by rapid-fluid infusion, indicated by inconsistent amelioration with high dose TRPV4 antagonist.

2.
Cryobiology ; 113: 104580, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37625476

ABSTRACT

By observing the formation behavior of ice crystals, the quality of food products under different freezing conditions can be intuitively judged. In this paper, large yellow croaker was taken as the research object, and a novel cryomicroscopic system was developed to directly observe the structure of ice crystals during the freezing process. The cryoprotective effects of 4% sucrose +4% sorbitol (SU + SO), 4% xylo-oligosaccharide (XO), 4% xylo-oligosaccharide + 0.3% tetrasodium pyrophosphate (XO + TSPP) and 0.2% antifreeze protein (AFP) at different freezing temperatures were investigated. And the evaluation indicators, such as cell deformation degree, equivalent diameters, roundness, elongation and fractal dimension were introduced to quantify the damage of ice crystals to muscle tissues and fibers. The results indicate that reducing the freezing temperature and adding cryoprotectants can improve the quality of large yellow croaker. AFP has the best cryoprotective effect, with a reduction in cell deformation degree of 54.78% and 67.83% compared to the Control group at -5 °C and -20 °C, respectively. SU + SO and XO have the equivalent antifreeze effect, which is slightly inferior to XO + TSPP. In addition, physical parameters of large yellow croaker samples were measured to verify the influence of ice crystal structure on product quality. Therefore, direct observation of the ice crystal formation process and evaluation of ice crystal structure can accurately reflect the quality of frozen products, which is of great significance for the development of refrigeration and preservation technology.


Subject(s)
Cryoprotective Agents , Perciformes , Animals , Freezing , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Ice , alpha-Fetoproteins , Cryopreservation/methods , Antifreeze Proteins/pharmacology , Oligosaccharides/chemistry
3.
J Med Chem ; 63(23): 14867-14884, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33201708

ABSTRACT

Investigation of TRPV4 as a potential target for the treatment of pulmonary edema associated with heart failure generated a novel series of acyclic amine inhibitors displaying exceptional potency and PK properties. The series arose through a scaffold hopping approach, which relied on use of an internal H-bond to replace a saturated heterocyclic ring. Optimization of the lead through investigation of both aryl regions revealed approaches to increase potency through substituents believed to enhance separate intramolecular and intermolecular H-bond interactions. A proposed internal H-bond between the amine and neighboring benzenesulfonamide was stabilized by electronically modulating the benzenesulfonamide. In the aryl ether moiety, substituents para to the nitrile demonstrated an electronic effect on TRPV4 recognition. Finally, the acyclic amines inactivated CYP3A4 and this liability was addressed by modifications that sterically preclude formation of a putative metabolic intermediate complex to deliver advanced TRPV4 antagonists as leads for discovery of novel medicines.


Subject(s)
Diamines/chemistry , Sulfonamides/chemistry , TRPV Cation Channels/antagonists & inhibitors , Animals , Cytochrome P-450 CYP3A/metabolism , Diamines/chemical synthesis , Diamines/metabolism , Diamines/pharmacokinetics , Drug Design , Humans , Hydrogen Bonding/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism
4.
ACS Med Chem Lett ; 10(8): 1228-1233, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31413810

ABSTRACT

GSK2798745, a clinical candidate, was identified as an inhibitor of the transient receptor potential vanilloid 4 (TRPV4) ion channel for the treatment of pulmonary edema associated with congestive heart failure. We discuss the lead optimization of this novel spirocarbamate series and specifically focus on our strategies and solutions for achieving desirable potency, rat pharmacokinetics, and physicochemical properties. We highlight the use of conformational bias to deliver potency and optimization of volume of distribution and unbound clearance to enable desirable in vivo mean residence times.

6.
Nature ; 564(7736): 439-443, 2018 12.
Article in English | MEDLINE | ID: mdl-30405246

ABSTRACT

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Drug Design , Membrane Proteins/agonists , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Humans , Ligands , Membrane Proteins/immunology , Mice , Models, Molecular , Nucleotides, Cyclic/metabolism
7.
J Med Chem ; 61(21): 9738-9755, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30335378

ABSTRACT

A novel series of pyrrolidine sulfonamide transient receptor potential vanilloid-4 (TRPV4) antagonists was developed by modification of a previously reported TRPV4 inhibitor (1). Several core-structure modifications were identified that improved TRPV4 activity by increasing structural rigidity and reducing the entropic energy penalty upon binding to the target protein. The new template was initially discovered as a minor regio-isomeric side product formed during routine structure-activity relationship (SAR) studies, and further optimization resulted in highly potent compounds with a novel pyrrolidine diol core. Further improvements in potency and pharmacokinetic properties were achieved through SAR studies on the sulfonamide substituent to give an optimized lead compound GSK3395879 (52) that demonstrated the ability to inhibit TRPV4-mediated pulmonary edema in an in vivo rat model. GSK3395879 is a tool for studying the biology of TRPV4 and an advanced lead for identifying new heart failure medicines.


Subject(s)
Drug Design , Pyrrolidines/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Rats , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics
8.
ACS Med Chem Lett ; 9(7): 736-740, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034610

ABSTRACT

Bone Morphogenetic Protein 1 (BMP1) inhibition is a potential method for treating fibrosis because BMP1, a member of the zinc metalloprotease family, is required to convert pro-collagen to collagen. A novel class of reverse hydroxamate BMP1 inhibitors was discovered, and cocrystal structures with BMP1 were obtained. The observed binding mode is unique in that the small molecule occupies the nonprime side of the metalloprotease pocket providing an opportunity to build in metalloprotease selectivity. Structure-guided modification of the initial hit led to the identification of an oral in vivo tool compound with selectivity over other metalloproteases. Due to irreversible inhibition of cytochrome P450 3A4 for this chemical class, the risk of potential drug-drug interactions was managed by optimizing the series for subcutaneous injection.

9.
ACS Med Chem Lett ; 8(5): 549-554, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28523109

ABSTRACT

Transient Receptor Potential Vanilloid 4 (TRPV4) is a member of the Transient Receptor Potential (TRP) superfamily of cation channels. TRPV4 is expressed in the vascular endothelium in the lung and regulates the integrity of the alveolar septal barrier. Increased pulmonary vascular pressure evokes TRPV4-dependent pulmonary edema, and therefore, inhibition of TRPV4 represents a novel approach for the treatment of pulmonary edema associated with conditions such as congestive heart failure. Herein we report the discovery of an orally active, potent, and selective TRPV4 blocker, 3-(1,4'-bipiperidin-1'-ylmethyl)-7-bromo-N-(1-phenylcyclopropyl)-2-[3-(trifluoromethyl)phenyl]-4-quinolinecarboxamide (GSK2193874, 28) after addressing an unexpected off-target cardiovascular liability observed from in vivo studies. GSK2193874 is a selective tool for elucidating TRPV4 biology both in vitro and in vivo.

10.
Am J Physiol Lung Cell Mol Physiol ; 307(2): L158-72, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24838754

ABSTRACT

The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function.


Subject(s)
Acute Lung Injury/chemically induced , TRPV Cation Channels/antagonists & inhibitors , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/chemistry , Chlorine/toxicity , HEK293 Cells , Humans , Hydrochloric Acid/toxicity , Male , Mice , Pneumonia/drug therapy , Rats , TRPV Cation Channels/agonists , TRPV Cation Channels/deficiency
11.
J Med Chem ; 57(8): 3464-83, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24670009

ABSTRACT

The discovery and optimization of a series of acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) inhibitors based on a pyrimido[4,5-b][1,4]oxazine scaffold is described. The SAR of a moderately potent HTS hit was investigated resulting in the discovery of phenylcyclohexylacetic acid 1, which displayed good DGAT1 inhibitory activity, selectivity, and PK properties. During preclinical toxicity studies a metabolite of 1 was observed that was responsible for elevating the levels of liver enzymes ALT and AST. Subsequently, analogues were synthesized to preclude the formation of the toxic metabolite. This effort resulted in the discovery of spiroindane 42, which displayed significantly improved DGAT1 inhibition compared to 1. Spiroindane 42 was well tolerated in rodents in vivo, demonstrated efficacy in an oral triglyceride uptake study in mice, and had an acceptable safety profile in preclinical toxicity studies.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Oxazines/chemical synthesis , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Dogs , Drug Discovery , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Macaca mulatta , Mice , Mice, Inbred C57BL , Oxazines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Triglycerides/metabolism
12.
Bioorg Med Chem ; 21(4): 979-92, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23294830

ABSTRACT

PPARγ is a member of the nuclear hormone receptor family and plays a key role in the regulation of glucose homeostasis. This Letter describes the discovery of a novel chemical class of diarylsulfonamide partial agonists that act as selective PPARγ modulators (SPPARγMs) and display a unique pharmacological profile compared to the thiazolidinedione (TZD) class of PPARγ full agonists. Herein we report the initial discovery of partial agonist 4 and the structure-activity relationship studies that led to the selection of clinical compound INT131 (3), a potent PPARγ partial agonist that displays robust glucose-lowering activity in rodent models of diabetes while exhibiting a reduced side-effects profile compared to marketed TZDs.


Subject(s)
PPAR gamma/agonists , Quinolines/chemistry , Sulfonamides/chemistry , Administration, Oral , Animals , Binding Sites , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Diabetes Mellitus, Experimental/drug therapy , Half-Life , Insulin Resistance , Male , Mice , PPAR gamma/metabolism , Protein Structure, Tertiary , Quinolines/pharmacokinetics , Quinolines/therapeutic use , Rats , Rats, Sprague-Dawley , Rats, Zucker , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
13.
Sci Transl Med ; 4(159): 159ra148, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23136043

ABSTRACT

Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


Subject(s)
Heart Failure/complications , Membrane Transport Modulators/administration & dosage , Membrane Transport Modulators/therapeutic use , Pulmonary Edema/drug therapy , Pulmonary Edema/prevention & control , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Animals , Blood Pressure/drug effects , Calcium/metabolism , Disease Models, Animal , Diuretics/pharmacology , Endothelium/drug effects , Endothelium/metabolism , Endothelium/pathology , Heart Failure/pathology , Heart Failure/physiopathology , Heart Rate/drug effects , Humans , In Vitro Techniques , Ion Channel Gating/drug effects , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Mice , Mice, Knockout , Permeability/drug effects , Protein Transport/drug effects , Pulmonary Edema/etiology , Pulmonary Edema/pathology , Rats , TRPV Cation Channels/metabolism , Water-Electrolyte Balance/drug effects
14.
J Med Chem ; 50(1): 2-5, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17201404

ABSTRACT

The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.


Subject(s)
Antihypertensive Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Oxadiazoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Aorta/drug effects , Aorta/physiology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Blood Pressure/drug effects , In Vitro Techniques , Models, Molecular , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Rats , Rats, Inbred SHR , Structure-Activity Relationship , rho-Associated Kinases
15.
J Med Chem ; 50(1): 6-9, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17201405

ABSTRACT

Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead. Indazole substitution played a critical role in decreasing clearance and improving oral bioavailability.


Subject(s)
Amides/chemical synthesis , Antihypertensive Agents/chemical synthesis , Indazoles/chemical synthesis , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridones/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Animals , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Aorta/drug effects , Aorta/physiology , Blood Pressure/drug effects , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Intracellular Signaling Peptides and Proteins/chemistry , Models, Molecular , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Protein Serine-Threonine Kinases/chemistry , Pyridones/pharmacokinetics , Pyridones/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Rats, Inbred SHR , Structure-Activity Relationship , rho-Associated Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...