Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
1.
Anal Bioanal Chem ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207492

ABSTRACT

Protein glycosylation is a highly heterogeneous post-translational modification that has been demonstrated to exhibit significant variations in various diseases. Due to the differential patterns observed in disease and healthy populations, the glycosylated proteins hold promise as early indicators for multiple diseases. With the continuous development of liquid chromatography-mass spectrometry (LC-MS) technology and spectrum analysis software, the sensitivity for the decipher of the tandem mass spectra of the glycopeptides carrying intact glycans, i.e., intact glycopeptides, enzymatic hydrolyzed from glycoproteins has been significantly improved. From quantified intact glycopeptides, the difference of protein glycosylation at multiple levels, e.g., glycoprotein, glycan, glycosite, and site-specific glycans, could be obtained for different samples. However, the manual analysis of the intact glycopeptide quantitative data at multiple levels is tedious and time consuming. In this study, we have developed a software tool named "GP-Marker" to facilitate large-scale data mining of spectra dataset of intact N-glycopeptide at multiple levels. This software provides a user-friendly and interactive interface, offering operational tools for machine learning to researchers without programming backgrounds. It includes a range of visualization plots displaying differential glycosylation and provides the ability to extract multi-level data analysis from intact glycopeptide data quantified by Glyco-Decipher.

2.
Oncogene ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154122

ABSTRACT

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.

3.
Nat Commun ; 15(1): 7459, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198440

ABSTRACT

Protein methylation is a functionally important post-translational modification that occurs on diverse amino acid residues. The current proteomics approaches are inefficient to discover the methylation on residues other than Arg and Lys, which hinders the deep understanding of the functional role of rare protein methylation. Herein, we present a methyl-specific metabolic labeling approach for global methylome mapping, which enable the acquisition of methylome dataset covering diverse methylation types. Interestingly, of the identified methylation events, His methylation is found to be preferably occurred in C3H1 zinc fingers (ZFs). These His methylation events are determined to be Nπ specific and catalyzed by CARNMT1. The His methylation is found to stabilize the structure of ZFs. U2AF1 is used as a proof-of-concept to highlight the functional importance of His methylation in ZFs in RNA binding and RNA metabolism. The results of this study enable novel understanding of how protein methylation regulates cellular processes.


Subject(s)
Histidine , Protein Processing, Post-Translational , Zinc Fingers , Histidine/metabolism , Methylation , Humans , Epigenome , HEK293 Cells , Methyltransferases/metabolism , Methyltransferases/genetics
4.
Anal Chem ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185576

ABSTRACT

Arginine methylation is one of the most important post-translational modifications involved in the regulation of numerous biological processes. To better understand the biological significance of arginine methylation, enrichment methods need to be developed to analyze the methylated proteome at large-scale. Unfortunately, the prevailing enrichment method based on immunoaffinity purification can only enrich a subset of them due to the lack of pan-specific antibodies. Therefore, it is crucial to develop a stable and efficient antibody-free approach for the global analysis of arginine methylation. In this study, we developed a chemoenzymatic method for the simultaneous identification of mono- and dimethylated arginine. Totally, we identified 1006 arginine methylation events in Jurkat T cells, corresponding to 645 dimethylated sites and 361 monomethylated sites. We further applied the developed approach to global identification of the substrate proteins regulated by type I protein arginine methyltransferases (PRMTs) and identified 49 substrate proteins of type I PRMTs, which will facilitate a better understanding of PRMTs-regulated biological processes. Given the robust performance of this method, it would have broad application in methylproteomics analysis.

5.
Food Chem ; 460(Pt 2): 140669, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39094346

ABSTRACT

As vastly modified on secreted proteins, N-glycosylation is found on milk proteins and undergo dynamic changes during lactation, characterizing milk protein glycosylation would benefit the elucidation of glycosylation pattern differences between samples. However, their low abundance required specific enrichment. Herein, through rational design and controllable synthesis, we developed a novel multi-functional polymer for the isolation of protein glycosylation. It efficiently separated glycopeptides from complex background inferences with mutual efforts of hydrophilic interaction chromatography (HILIC), metal ion affinity and ion exchange. By fine-tuning Ca2+ as regulators of aldehyde hyaluronic acid (HA) conformation, the grafting density of HA was remarkably improved. Moreover, grafting Ti4+ further enhanced the enrichment performance. Application of this material to characterize bovine milk and colostrum proteins yields 479 and 611 intact glycopeptides, respectively. Comparative analysis unraveled the distinct glycosylation pattern as well the different distribution of glycoprotein abundances between the two samples, offering insights for functional food development.

6.
Se Pu ; 42(7): 702-710, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966978

ABSTRACT

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Subject(s)
Citric Acid Cycle , Humans , HeLa Cells , Succinic Acid/metabolism , Succinic Acid/chemistry , Fumarates/metabolism , Fumarates/chemistry
7.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906860

ABSTRACT

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Pyroptosis , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Female , Humans , Male , Mice , Middle Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Dynamins/metabolism , Dynamins/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gasdermins , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphorylation/drug effects , Pyroptosis/drug effects , Pyroptosis/genetics , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
8.
Anal Chem ; 96(26): 10506-10514, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38874382

ABSTRACT

Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.


Subject(s)
Fucose , Polysaccharides , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/analysis , Fucose/chemistry , Fucose/metabolism , Glycosylation , Tandem Mass Spectrometry , Cell Line, Tumor , Glycopeptides/chemistry , Glycopeptides/analysis , Glycopeptides/metabolism
10.
Nano Lett ; 24(15): 4423-4432, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568019

ABSTRACT

The HIV-1 envelope is a heavily glycosylated class 1 trimeric fusion protein responsible for viral entry into CD4+ immune cells. Developing neutralizing antibodies against the specific envelope glycans is an alternative method for antiviral therapies. This work presents the first-ever development and characterization of artificial neutralizing antibodies using molecular imprinting technology to recognize and bind to the envelope protein of HIV-1. The prepared envelope glycan-imprinted nanoparticles (GINPs) can successfully prevent HIV-1 from infecting target cells by shielding the glycans on the envelope protein. In vitro experiments showed that GINPs have strong affinity toward HIV-1 (Kd = 36.7 ± 2.2 nM) and possess high anti-interference and specificity. GINPs demonstrate broad inhibition activity against both tier 1 and tier 2 HIV-1 strains with a pM-level IC50 and exhibit a significant inhibitory effect on long-term viral replication by more than 95%. The strategy provides a promising method for the inhibition and therapy of HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Humans , Antibodies, Neutralizing , HIV Antibodies/metabolism , Glycosylation , HIV Infections/drug therapy , Polysaccharides/metabolism
11.
Se Pu ; 42(4): 333-344, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38566422

ABSTRACT

17ß-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (µmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 µmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 µmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 µmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.


Subject(s)
Dimethyl Sulfoxide , Tandem Mass Spectrometry , Animals , Humans , Chromatography, Liquid , HeLa Cells , Estradiol/pharmacology , Phosphoproteins/chemistry , Phosphoproteins/metabolism , ErbB Receptors/metabolism , Phosphorylation , Mammals/metabolism
12.
Clin Proteomics ; 21(1): 13, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389037

ABSTRACT

SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.

13.
J Mol Cell Biol ; 16(2)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38200711

ABSTRACT

Accurate chromosome segregation in mitosis depends on kinetochores that connect centromeric chromatin to spindle microtubules. Centromeres are captured by individual microtubules via a kinetochore constitutive centromere-associated network (CCAN) during chromosome segregation. CCAN contains 16 subunits, including CENP-W and CENP-T. However, the molecular recognition and mitotic regulation of the CCAN assembly remain elusive. Here, we revealed that CENP-W binds to the histone fold domain and an uncharacterized N-terminal region of CENP-T. Aurora B phosphorylates CENP-W at threonine 60, which enhances the interaction between CENP-W and CENP-T to ensure robust metaphase chromosome alignment and accurate chromosome segregation in mitosis. These findings delineate a conserved signaling cascade that integrates protein phosphorylation with CCAN integrity for the maintenance of genomic stability.


Subject(s)
Aurora Kinase B , Chromosomal Proteins, Non-Histone , Chromosome Segregation , Mitosis , Aurora Kinase B/metabolism , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Phosphorylation , HeLa Cells , Kinetochores/metabolism , Protein Binding , Centromere/metabolism
14.
Int J Sports Physiol Perform ; 19(4): 365-374, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38237576

ABSTRACT

PURPOSE: We compared the adaptive responses to supramaximal high-intensity interval training (HIIT) individualized according to anaerobic speed reserve (ASR), the 30-15 Intermittent Fitness Test (VIFT), and velocity associated with maximum oxygen uptake (MAS) to determine which approach facilitates more identical adaptations across athletes with different profiles. METHODS: Thirty national-level basketball players (age = 28.4 [5] y; body mass = 88.9 [6.3] kg; height = 190 [4.8] cm) were randomly assigned to 3 training groups performing 2 sets of 4, 6, 8, 6, 8, and 10-minute runs (from first to sixth week, respectively), consisting of 15-second running at Δ%20ASR (MAS + 0.2 × ASR), 95%VIFT, and 120%MAS, with 15 seconds recovery between efforts and a 3-minute relief between sets. RESULTS: All 3 interval interventions significantly (P < .05) enhanced maximum oxygen uptake (V˙O2max), oxygen pulse (V˙O2/HR), first and second ventilatory threshold (VT1 and VT2), cardiac output (Q˙max), stroke volume, peak and average power output, testosterone levels, and testosterone-to-cortisol ratio following the training period. Different values of interindividual variability (coefficient of variation) for the percentage changes of the measured variables were observed in response to HIITASR, HIITvIFT, and HIITMAS for V˙O2max (8.7%, 18.8%, 34.6%, respectively), V˙O2/HR (9.5%, 15.0%, 28.6%), VT1 (9.6%, 19.6%, 34.6%), VT2 (21.8%, 32.4%, 56.7%), Q˙max (8.2%, 16.9%, 28.8%), stroke volume (7.9%, 15.2%, 23.5%), peak power output (20%, 22%, 37.3%), average power output (21.1%, 21.3%, 32.5%), testosterone (52.9%, 61.6%, 59.9%), and testosterone-to-cortisol ratio (55.1%, 59.5%, 57.8%). CONCLUSIONS: Supramaximal HIIT performed at Δ%20ASR resulted in more uniform physiological adaptations than HIIT interventions prescribed using VIFT or MAS. Although hormonal changes do not follow this approach, all the approaches induced an anabolic effect.


Subject(s)
Basketball , High-Intensity Interval Training , Humans , Adult , Oxygen Consumption/physiology , Hydrocortisone , Anaerobiosis , Oxygen , High-Intensity Interval Training/methods , Testosterone
15.
J Exp Clin Cancer Res ; 43(1): 14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191501

ABSTRACT

BACKGROUND: Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS: Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS: The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS: Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.


Subject(s)
Nasopharyngeal Neoplasms , Ubiquitin-Protein Ligases , Humans , Nasopharyngeal Carcinoma/genetics , Ubiquitin-Protein Ligases/genetics , Vimentin/genetics , Epithelial-Mesenchymal Transition , Nasopharyngeal Neoplasms/genetics
16.
Adv Sci (Weinh) ; 11(9): e2306955, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084450

ABSTRACT

The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.


Subject(s)
Stomach Neoplasms , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Stomach Neoplasms/diagnosis , Glycosylation , Biomarkers , Polysaccharides/chemistry
17.
Chem Res Toxicol ; 37(1): 1-15, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38146056

ABSTRACT

Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.


Subject(s)
Proteins , Proteome , Ligands , Proteins/chemistry , Mass Spectrometry/methods , Proteolysis , Proteome/metabolism
18.
EMBO J ; 42(24): e114051, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38059508

ABSTRACT

CDK11 is an emerging druggable target for cancer therapy due to its prevalent roles in phosphorylating critical transcription and splicing factors and in facilitating cell cycle progression in cancer cells. Like other cyclin-dependent kinases, CDK11 requires its cognate cyclin, cyclin L1 or cyclin L2, for activation. However, little is known about how CDK11 activities might be modulated by other regulators. In this study, we show that CDK11 forms a tight complex with cyclins L1/L2 and SAP30BP, the latter of which is a poorly characterized factor. Acute degradation of SAP30BP mirrors that of CDK11 in causing widespread and strong defects in pre-mRNA splicing. Furthermore, we demonstrate that SAP30BP facilitates CDK11 kinase activities in vitro and in vivo, through ensuring the stabilities and the assembly of cyclins L1/L2 with CDK11. Together, these findings uncover SAP30BP as a critical CDK11 activator that regulates global pre-mRNA splicing.


Subject(s)
RNA Precursors , RNA Splicing , RNA Precursors/genetics , RNA Precursors/metabolism , Phosphorylation , Cell Division , Cyclins/genetics , Cyclins/metabolism
19.
J Transl Med ; 21(1): 919, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110956

ABSTRACT

BACKGROUND: Mutations in TP53 gene is considered a main driver of hepatocellular carcinoma (HCC). While TP53 mutations are the leading cause of p53 dysfunction, their occurrence rates may drop to approximately 10% in cohorts without hepatitis B virus and aflatoxin exposure. This observation suggests that the deactivation of wild-type p53 (p53wt) may be a critical factor in the majority of HCC cases. However, the mechanism undermining p53wt activity in the liver remains unclear. METHODS: Microarray analysis and luciferase assay were utilized to confirm target associations. Gain- and/or loss-of-function methods were employed to assess alterations in signaling pathways. Protein interactions were analyzed by molecular immunological methods and further visualized by confocal microscopy. Bioinformatic analysis was performed to analyze clinical significance. Tumor xenograft nude mice were used to validate the findings in vivo. RESULTS: Our study highlights the oncogenic role of Rictor, a key component of the mammalian target of rapamycin complex 2 (mTORC2), in hepatocytes. Rictor exerts its oncogenic function by binding to p53wt and subsequently blocking p53wt activity based on p53 status, requiring the involvement of mTOR. Moreover, we observed a dynamic nucleocytoplasmic distribution pattern of Rictor, characterized by its translocation from the nucleus (in precancerous lesions) to the cytoplasm (in HCCs) during malignant transformation. Notably, Rictor is directly targeted by the liver-enriched microRNA miR-192, and the disruption of the miR-192-Rictor-p53-miR-192 signaling axis was consistently observed in both human and rat HCC models. Clinical analysis associated lower miR-192/higher Rictor with shorter overall survival and more advanced clinical stages (P < 0.05). In mice, xenograft tumors overexpressing miR-192 exhibited lower Rictor expression levels, leading to higher p53 activity, and these tumors displayed slower growth compared to untreated HCC cells. CONCLUSIONS: Rictor dynamically shuttles between the nucleus and cytoplasm during HCC development. Its pivotal oncogenic role involves binding and inhibiting p53wt activity within the nucleus in early hepatocarcinogenesis. Targeting Rictor presents a promising strategy for HCC based on p53 status.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Rapamycin-Insensitive Companion of mTOR Protein , Animals , Humans , Mice , Rats , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Genes, p53 , Hepatocytes/pathology , Liver Neoplasms/pathology , Mice, Nude , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism
20.
Open Med (Wars) ; 18(1): 20230879, 2023.
Article in English | MEDLINE | ID: mdl-38152335

ABSTRACT

The activation of hepatic stellate cells (HSCs) is regarded as the primary driving factor of liver fibrosis. miR-192, a miRNA associated with hepatocellular carcinoma and enriched in HSCs, has an undisclosed role in HSC activation and liver fibrosis. In this study, a CCl4-induced rat liver fibrosis model and transforming growth factor-beta 1 (TGF-ß1)-treated HSC lines (LX-2 and HSC-T6) were used to detect miR-192 and Rictor levels in vivo and in vitro. Bioinformatic analysis and a dual luciferase assay were used to predict and confirm the interaction of Rictor with miR-192. Gain- and/or loss-of-function methods evaluated molecular changes and HSC activation phenotypes, detected by quantitative real-time PCR, western blotting, and immunofluorescence. We observed a gradual downregulation of miR-192 and upregulation of Rictor during CCl4-induced liver fibrosis/cirrhosis in rats. Enriched miR-192 was downregulated, while Rictor was upregulated in TGF-ß1-activated HSCs. miR-192 inhibited the activation of HSCs by directly targeting Rictor. High miR-192/low Rictor expression attenuated the fibrotic-related gene expression by AKT/mTORC2 signaling. In conclusion, miR-192 could inhibit the activation of HSCs by directly targeting Rictor in the AKT/mTORC2 signaling pathway. This study provides insights into potential therapeutic targets for liver fibrosis and cirrhosis.

SELECTION OF CITATIONS
SEARCH DETAIL