Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Gastrointest Oncol ; 15(3): 1165-1178, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989440

ABSTRACT

Background: Pancreatic cancer is a highly aggressive malignancy with poor prognosis, and there is an urgent need to understand its molecular mechanisms for early diagnosis and treatment. Despite surgical resection being the only effective treatment, most patients are diagnosed at an advanced stage, missing the optimal window for therapy. Identifying novel biomarkers is crucial for prognostic assessment, treatment planning, and early intervention. Ephrin A4 (EFNA4), a member of the receptor tyrosine kinase family, is involved in vascular and epithelial development via regulation of cell migration and rejection. However, the role of EFNA4 in pancreatic cancer has not been reported. Therefore, our study aimed to clarify the role of EFNA4 in pancreatic cancer through bioinformatics analysis and vitro experiments. Methods: The expression of EFNA4 and its potential value as a diagnostic and prognostic biomarker in pancreatic cancer was analyzed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) database. According to the expression level of EFNA4, patients were divided into high expression group and low expression group, and the correlation between overall survival (OS) and disease-free survival (DFS) with different expression levels of EFNA4 and clinical parameters were analyzed. Subsequently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect EFNA4 expression. The proliferation, invasion, and cloning ability of the cells were detected via Cell Counting Kit 8 (CCK8), Transwell, and plate cloning assays, respectively. Results: EFNA4 is highly expressed in pancreatic cancer, and upregulation of EFNA4 is associated with poor prognosis. In this study, EFNA4 expression was correlated with T stage and TNM (tumor-node-metastasis) stage of pancreatic cancer, and the median survival time and progression-free survival (PFS) were worse in those with high EFNA4 expression (394 days) than in those with low expression (525 days) [hazard ratio (HR): 1.47, 95% confidence interval (CI): 1.00-2.16, P=0.047]. In addition, EFNA4 was also found to be involved in the regulation of signal pathways such as cell adhesion, cyclic AMP, insulin secretion, pancreatic secretion, and protein digestion and absorption. In vitro experiments demonstrated that EFNA4 knockdown significantly inhibited the proliferation, cloning ability, and invasiveness of the PANC-1 and SW1990 pancreatic cancer cell lines. Conclusions: The abnormal expression of EFNA4 in pancreatic cancer is associated with poor prognosis. Knockout of EFNA4 gene could significantly inhibit the proliferation and invasion of pancreatic cancer cells. Therefore, EFNA4 may be one of the molecular targets for poor prognosis of patients with pancreatic cancer.

3.
Neoplasma ; 68(2): 362-374, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33118833

ABSTRACT

LncRNA maternally expressed gene 3 (MEG3) is a potential prognostic and diagnostic biomarker in colorectal carcinoma (CC). However, its cellular functions and mechanism remain not fully uncovered. Relative expression of MEG3, miRNA (miR)-103a-3p, and pyruvate dehydrogenase E1 subunit beta (PDHB) was detected by RT-qPCR and western blotting. Cell proliferation was measured by CCK-8 assay, colony formation assay, and flow cytometry, as well as xenograft tumor assay. Transwell assay examined cell invasion. Endoplasmic reticulum (ER) stress was evaluated by western blotting. Dual-luciferase reporter assay and RNA immunoprecipitation determined the relationship between miR-103a-3p and MEG3 or PDHB. Expression of MEG3 was downregulated in human CC tumor tissues and cells (SW620 and HCT116), accompanied by higher miR-103a-3p and lower PDHB. Restoring MEG3 suppressed cell viability, colony formation ability, and invasion, arrested cell cycle, and induced apoptosis rate in SW620 and HCT116 cells, as well as promoted expression of ER stress-related proteins (GRP78, ATF6, CHOP, caspase-3, and caspase-9). Furthermore, MEG3 overexpression hindered tumor growth and facilitated ER stress in vivo. Molecularly, miR-103a-3p was a target of MEG3, and further targeted PDHB. Similarly, in function, blocking miR-103a-3p suppressed CC in vitro by affecting proliferation, invasion, and ER stress; in addition, restoring miR-103a-3p partially counteracted the suppressive role of MEG3 in CC cells. MEG3 sponged miR-103a-3p to suppress CC malignancy by inducing ER stress and inhibiting cell proliferation and invasion via upregulating PDHB, suggesting a novel MEG3/miR-103a-3p/PDHB ceRNA pathway.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Pyruvate Dehydrogenase (Lipoamide) , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Humans , MicroRNAs/genetics , Pyruvate Dehydrogenase (Lipoamide)/genetics , RNA, Long Noncoding/genetics
4.
Oncol Lett ; 18(2): 1304-1310, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31423190

ABSTRACT

ATPase family AAA domain-containing protein 3 (ATAD3) is a mitochondrial membrane-bound ATPase that is involved in a number of cellular processes and is linked with the progression of various types of malignancies. In primates, the ATAD3 gene cluster contains ATAD3A, ATAD3B and ATAD3C. The association between ATAD3 gene cluster expression and hepatocellular carcinoma (HCC) remains unknown. Therefore, the present study examined the prognostic significance of ATAD3 gene cluster expression in patients with HCC. Box plots of expression differences between HCC and normal liver tissues for the ATAD3 family genes were obtained from the online tool Gene Expression Profiling Interactive Analysis. Data from 360 patients with HCC in The Cancer Genome Atlas database were analyzed. Kaplan-Meier analysis and a Cox regression model were used to calculate median survival time (MST) and overall survival (OS). ATAD3A and ATAD3B expression levels were higher in HCC compared with normal liver tissues (P<0.05). However, ATAD3C expression was significantly decreased in HCC tissues compared with normal liver tissues (P<0.05). ATAD3A [P=0.017, hazard ratio (HR)=1.54, 95% confidence interval (CI)=1.08-2.20; adjusted P=0.032; adjusted HR=1.52; 95% CI=1.04-2.22] and ATAD3B (P=0.026, HR=1.49, 95% CI=1.05-2.13; adjusted P=0.031, adjusted HR=1.52, 95% CI=1.04-2.21) expression levels were significantly associated with OS. A joint-effects analysis revealed that patients with high ATAD3A and ATAD3B expression had reduced OS rates compared with patients with low ATAD3A and ATAD3B expression (P=0.007, HR=1.77, 95% CI=1.16-2.69; adjusted P=0.013, adjusted HR=1.76, 95% CI=1.13-2.75). In conclusion, ATAD3A and ATAD3B may serve as potential prognostic biomarkers for patients with HCC.

SELECTION OF CITATIONS
SEARCH DETAIL