Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 752
Filter
1.
Thorac Cancer ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720472

ABSTRACT

BACKGROUND: Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS: Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS: The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS: These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.

2.
Article in English | MEDLINE | ID: mdl-38702157

ABSTRACT

Introduction: Preeclampsia (PE) is a fundamental cause of preterm labor, intrauterine growth restriction, and persistent postpartum hypertension. In the present study, we aimed to investigate the correlation between 24-h urinary protein excretion, serum markers, and placental growth factor and their adverse pregnancy outcomes in patients with PE. Methods: A total of 126 pregnant women with PE (86 cases of mild PE and 40 cases of severe PE, assigned to the observation group) who came to our hospital from March 2019 to December 2021 for regular obstetric checkups and delivery were selected, with 60 healthy pregnant women assigned to the control group. Routine biochemical parameters, 24-h urinary protein quantification, serum parameters, and placental growth factor levels were recorded. The incidence of adverse neonatal pregnancy outcomes and abnormal fetal heart monitoring, neonatal body mass, 1 min Apgar score, and other adverse pregnancy outcomes were also analyzed in the different groups. Results: In comparison with healthy pregnant subjects, PE patients had earlier delivery gestational weeks (P < .05), significantly higher systolic blood pressure (SBP), diastolic blood pressure (DBP), 24-h urinary protein excretion, total cholesterol (TC), triglyceride (TG), D-Dimer and human chorionic gonadotropin (ß-hCG) levels (P < .05), lower albumin (ALB), platelet count, pregnant associated plasma protein A (PAPP-A) and placental growth factor (PLGF) (P < .05), and higher incidence of maternal and perinatal adverse outcomes (P < .05). Conclusions: Combined screening of 24-h urinary protein, PAPP-A, ß-hCG, PLGF, and serum indicators in early pregnancy are essential in predicting PE, allowing timely assessment of the risk of adverse pregnancy, and providing a basis for clinical intervention.

3.
Front Nutr ; 11: 1351797, 2024.
Article in English | MEDLINE | ID: mdl-38751736

ABSTRACT

Background: AAA is a fatal condition that commonly occurs during vascular surgery. Nutritional status exerts a significant influence on the prognosis of various pathological conditions Scores from the CONUT screening tool have been shown to predict outcomes of certain malignancies and chronic diseases. However, the ramifications of nutritional status on AAA patients undergoing EVAR have not been elucidated in prior studies. In this study, we aimed to elucidate the correlation between CONUT scores and postoperative prognostic outcomes in patients with AAA undergoing EVAR. Methods: This was a retrospective review of 177 AAA patients treated with EVAR from June 2018 to November 2019 in a single center. Patient characteristics, CONUT scores, and postoperative status were collected. These patients were stratified into groups A and B according to CONUT scores. Subsequently, a comparative analysis of the baseline characteristics between the two cohorts was conducted. Cox proportional hazards and logistic regression analyses were employed to identify the autonomous predictors of mid-term mortality and complications, respectively. Results: Compared with group A, patients in group B had higher midterm mortality (p < 0.001). Univariate analysis showed that CONUT scores; respiratory diseases; stent types; preoperative Hb, CRP, PT, and Fb levels were risk factors for death. Multivariate analysis confirmed that CONUT score [HR, 1.276; 95% CI, 1.029-1.584; p = 0.027] was an independent risk factor for mortality. Logistic regression analysis showed that prior arterial disease, smoking, and D-dimer levels were risk factors, although multivariate analysis showed smoking (OR, 3.492; 95% CI, 1.426-8.553; p = 0.006) was an independent risk factor. Kaplan-Meier curves showed that patients in group B had shorter mid-term survival than those in group A (log-rank p < 0.001). Conclusion: Malnutrition was strongly associated with mid-term mortality in patients with infrarenal AAA treated with EVAR.

4.
J Mol Graph Model ; 129: 108764, 2024 06.
Article in English | MEDLINE | ID: mdl-38581901

ABSTRACT

STING (stimulator of interferon genes) is a crucial protein in the innate immune system's response to viral and bacterial infections. In this study, we investigated the mechanistic and energetic mechanism of the conformational transition process of STING activated by cGAMP binding. We found that the STING connector region undergoes an energetically unfavorable rotation during this process, which is compensated by the favorable interaction between cGAMP and the STING ligand binding domain. We further studied several disease-causing mutations and found that the V155 M mutation facilitates a smoother transition in the STING connector region. However, the V147L mutation exhibits unfavorable conformational transition energy, suggesting it may hinder STING activation pathway that relies on connector region rotation. Despite being labeled as hyperactive, the widespread prevalence of V147L/V147I mutations across species implies a neutral character, indicating complexity in its role. Overall, our analysis deepens the understanding of STING activation within the connector region, and targeting this region with compounds may provide an alternative approach to interfering with STING's function.


Subject(s)
Membrane Proteins , Membrane Proteins/chemistry , Molecular Conformation , Mutation
5.
Commun Biol ; 7(1): 512, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684865

ABSTRACT

Neoantigens derived from somatic mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), the most frequently mutated oncogene, represent promising targets for cancer immunotherapy. Recent research highlights the potential role of human leukocyte antigen (HLA) allele A*11:01 in presenting these altered KRAS variants to the immune system. In this study, we successfully generate and identify murine T-cell receptors (TCRs) that specifically recognize KRAS8-16G12V from three predicted high affinity peptides. By determining the structure of the tumor-specific 4TCR2 bound to KRASG12V-HLA-A*11:01, we conduct structure-based design to create and evaluate TCR variants with markedly enhanced affinity, up to 15.8-fold. This high-affinity TCR mutant, which involved only two amino acid substitutions, display minimal conformational alterations while maintaining a high degree of specificity for the KRASG12V peptide. Our research unveils the molecular mechanisms governing TCR recognition towards KRASG12V neoantigen and yields a range of affinity-enhanced TCR mutants with significant potential for immunotherapy strategies targeting tumors harboring the KRASG12V mutation.


Subject(s)
Antigens, Neoplasm , Proto-Oncogene Proteins p21(ras) , Receptors, Antigen, T-Cell , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/immunology , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/chemistry , Mice , Humans , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/therapy , Mutation , Immunotherapy
6.
Eur J Obstet Gynecol Reprod Biol ; 297: 40-49, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579545

ABSTRACT

OBJECTIVE: To systematically review and conduct a meta-analysis to assess the effectiveness of dienogest (DNG) in the prolonged conservative drug management of deep infiltrating endometriosis (DIE). The findings from this study are intended to serve as a valuable reference for clinical decision-making regarding medication in the context of DIE. METHODS: Following the PRISMA Statement, we searched EMBASE, PubMed, The Cochrane Library, Web of Science, and Medline databases for relevant literature published in the public domain from the date of establishment of the database until October 2023. Subsequently, all English publications on clinical studies using DNG for the treatment of DIE were included. Studies involving surgical intervention or drug therapy for postoperative recurrence were excluded. All literature included in the review underwent risk assessment of bias. Two evaluators independently screened the publications, conducted a quality assessment of each article and extracted data. We used Revman 5.4 for the meta-analysis of the included literature. RESULTS: Our final analysis consisted of five clinical studies, involving a total of 256 patients. We found that there were significant improvements in the following indicators post-medication as compared to levels before taking the medication: dysmenorrhea (MD = 4.24, 95 % CI: 2.92-5.56, P < 0.00001), non-menstrual pelvic pain (MD = 3.11, 95 % CI: 2.34-3.88, P < 0.00001), dyspareunia (MD = 1.93, 95 % CI: 1.50-2.37, P < 0.00001), dyschezia (MD = 2.48, 95 % CI: 1.83-3.12, P < 0.00001), and rectosigmoid nodule size (MD = 0.32, 95 % CI: 0.18-0.46, P < 0.00001). Compared with pre-medication levels, the following indicators were significantly worse: headache (RR = 0.03, 95 % CI: 0.00-0.23, P = 0.0006), decreased libido (RR = 0.08, 95 % CI: 0.01-0.62, P = 0.02); and there was no significant improvement in dysuria (P > 0.05). CONCLUSION: DNG showed efficacy in relieving pain-related symptoms and significantly reducing the size of the lesions when used in the drug conservative treatment of DIE.


Subject(s)
Endometriosis , Nandrolone , Humans , Female , Endometriosis/drug therapy , Nandrolone/analogs & derivatives , Nandrolone/therapeutic use , Treatment Outcome , Hormone Antagonists/therapeutic use
7.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38453527

ABSTRACT

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Subject(s)
Aldehyde Oxidoreductases , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Aldehyde Dehydrogenase , Aldehyde Dehydrogenase, Mitochondrial/genetics
8.
Phys Chem Chem Phys ; 26(13): 10408-10418, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38502252

ABSTRACT

Nuclear transition protein TNP1 is a crucial player mediating histone-protamine exchange in condensing spermatids. A unique combination of intrinsic disorder and multivalent properties turns TNP1 into an ideal agent for orchestrating the formation of versatile TNP-DNA assemblies. Despite its significance, the physicochemical property and the molecular mechanism followed by TNP1 for histone replacement and DNA condensation are still poorly understood. This study reports the first-time in vitro expression and purification of human TNP1 and investigates the hierarchical dynamics of TNP1-DNA interaction using a combination of computational simulations, biochemical assays, fluorescence imaging, and atomic force microscopy. We explored three crucial facets of TNP1-DNA interactions. Initially, we delve into the molecular binding process that entails fuzzy interactions between TNP1 and DNA at the atomistic scale. Subsequently, we analyze how TNP1 binding affects the electrostatic and mechanical characteristics of DNA and influences its morphology. Finally, we study the biomolecular condensation of TNP1-DNA when subjected to high concentrations. The findings of our study set the foundation for comprehending the potential involvement of TNP1 in histone replacement and DNA condensation in spermatogenesis.


Subject(s)
Chromosomal Proteins, Non-Histone , Histones , Male , Humans , Histones/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Semen/metabolism , Spermatozoa/metabolism , Nuclear Proteins
9.
J Child Neurol ; 39(3-4): 113-121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488459

ABSTRACT

OBJECTIVE: The primary objective was to elucidate the epidemiologic characteristics, risk determinants, and clinical outcomes associated with Pseudomonas aeruginosa-induced meningitis. METHODS: All cases of meningitis caused by Pseudomonas aeruginosa that were treated at the hospital between 2012 and 2022 were retrospectively analyzed and detailed. RESULTS: During a 10-year period, only 10 patients satisfied the inclusion criteria. Three patients had previously undergone neurosurgical procedures and 4 patients had leukemia. CONCLUSIONS: Although Pseudomonas aeruginosa meningitis possesses a low incidence rate, the rate of mortality is high. Patients with leukemia or those who have undergone neurosurgery are the most susceptible to diagnosis. Cases of severe neutropenia present only mild or no cerebrospinal fluid pleocytosis. In patients with sensitive Pseudomonas aeruginosa meningitis, the timely use of anti-Pseudomonas carbapenems for intravenous treatment is highly effective. For drug-resistant Pseudomonas aeruginosa meningitis, intrathecal polymyxins administration can be an effective treatment option.


Subject(s)
Anti-Bacterial Agents , Meningitis, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Male , Female , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Child , Retrospective Studies , Child, Preschool , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/epidemiology , Meningitis, Bacterial/complications , Anti-Bacterial Agents/therapeutic use , Infant , Adolescent
10.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377049

ABSTRACT

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

11.
J Phys Chem Lett ; 15(7): 1956-1961, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38346267

ABSTRACT

The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal-nitrogen-carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.

12.
J Inflamm Res ; 17: 1057-1082, 2024.
Article in English | MEDLINE | ID: mdl-38375021

ABSTRACT

As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.

13.
Angew Chem Int Ed Engl ; 63(14): e202401228, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38354230

ABSTRACT

Functional thin films, being fabricated by incorporating discrete supramolecular architectures, have potential applications in research areas such as sensing, energy storage, catalysis, and optoelectronics. Here, we have determined that an anion-coordinated triple helicate can be solution-processed into a functional thin film by incorporation into a polymethyl methacrylate (PMMA) matrix. The thin films fabricated by the incorporation of the anion-coordinated triple helicate show multiple optical properties, such as fluorescence, CD, and CPL. In addition, the film has the ability to recognize choline and choline derivatives in a water system. The successful recognition of Ch+ by the film represents the first example of utilizing 'aniono'-supramolecular architectures for biomolecule detection in aqueous solution and opens up a new route for designing biocompatible functional materials.

14.
Science ; 383(6685): eadj2609, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38305684

ABSTRACT

Insects rely on a family of seven transmembrane proteins called gustatory receptors (GRs) to encode different taste modalities, such as sweet and bitter. We report structures of Drosophila sweet taste receptors GR43a and GR64a in the apo and sugar-bound states. Both GRs form tetrameric sugar-gated cation channels composed of one central pore domain (PD) and four peripheral ligand-binding domains (LBDs). Whereas GR43a is specifically activated by the monosaccharide fructose that binds to a narrow pocket in LBDs, disaccharides sucrose and maltose selectively activate GR64a by binding to a larger and flatter pocket in LBDs. Sugar binding to LBDs induces local conformational changes, which are subsequently transferred to the PD to cause channel opening. Our studies reveal a structural basis for sugar recognition and activation of GRs.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Sugars , Taste Perception , Taste , Animals , Taste/physiology , Taste Perception/physiology , Drosophila melanogaster/physiology , Drosophila Proteins/chemistry , Protein Conformation
15.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38343092

ABSTRACT

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Subject(s)
Hemostatics , Hemostatics/pharmacology , Hemostatics/therapeutic use , Cysteine , Hyaluronic Acid , Anti-Bacterial Agents/pharmacology , Bandages , Maleimides
16.
Lancet Respir Med ; 12(5): 355-365, 2024 May.
Article in English | MEDLINE | ID: mdl-38309287

ABSTRACT

BACKGROUND: Penpulimab is a novel programmed death (PD)-1 inhibitor. This study aimed to establish the efficacy and safety of first line penpulimab plus chemotherapy for advanced squamous non-small-cell lung cancer. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 clinical trial enrolled patients with locally advanced or metastatic squamous non-small-cell lung cancer from 74 hospitals in China. Eligible participants were aged 18-75 years, had histologically or cytologically confirmed locally advanced (stage IIIb or IIIc) or metastatic (stage IV) squamous non-small-cell lung cancer, were ineligible to complete surgical resection and concurrent or sequential chemoradiotherapy, had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, did not have previous systemic chemotherapy for locally advanced or metastatic non-small-cell lung cancer, and had one or more measurable lesions according to RECIST (version 1.1). Participants were randomly assigned (1:1) to receive intravenous penpulimab 200 mg or placebo (excipient of penpulimab injection), plus paclitaxel 175 mg/m2 and carboplatin AUC of 5 intravenously on day 1 every 3 weeks for four cycles, followed by penpulimab or placebo as maintenance therapy. Stratification was done according to the PD-L1 tumour proportion score (<1% vs 1-49% vs ≥50%) and sex (male vs female). The participants, investigators, and other research staff were masked to group assignment. The primary outcome was progression-free survival assessed by the masked Independent Radiology Review Committee in the intention-to-treat population and patients with a PD-L1 tumour proportion score of 1% or more (PD-L1-positive subgroup). The primary analysis was based on the intention-to-treat analysis set (ie, all randomly assigned participants) and the PD-L1-positive subgroup. The safety analysis included all participants who received at least one dose of study drug after enrolment. This trial was registered with ClinicalTrials.gov (NCT03866993). FINDINGS: Between Dec 20, 2018, and Oct 10, 2020, 485 patients were screened, and 350 participants were randomly assigned (175 in the penpulimab group and 175 in the placebo group). Of 350 participants, 324 (93%) were male and 26 (7%) were female, and 347 (99%) were of Han ethnicity. In the final analysis (June 1, 2022; median follow-up, 24·7 months [IQR 0-41·4]), the penpulimab group showed an improved progression-free survival compared with the placebo group, both in the intention-to-treat population (median 7·6 months, 95% CI 6·8--9·6 vs 4·2 months, 95% CI 4·2-4·3; HR 0·43, 95% CI 0·33-0·56; p<0·0001) and in the PD-L1-positive subgroup (8·1 months, 5·7-9·7 vs 4·2 months, 4·1-4·3; HR 0·37, 0·27-0·52, p<0·0001). Grade 3 or worse treatment-emergent adverse events occurred in 120 (69%) 173 patients in the penpulimab group and 119 (68%) of 175 in the placebo group. INTERPRETATION: Penpulimab plus chemotherapy significantly improved progression-free survival in patients with advanced squamous non-small-cell lung cancer compared with chemotherapy alone. The treatment was safe and tolerable. Penpulimab combined with paclitaxel and carboplatin is a new option for first-line treatment in patients with this advanced disease. FUNDING: The National Natural Science Foundation of China, Shanghai Municipal Health Commission, Chia Tai Tianqing Pharmaceutical, Akeso.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carboplatin , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Paclitaxel , Humans , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Male , Middle Aged , Female , Double-Blind Method , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Carboplatin/administration & dosage , Carboplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , China , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Treatment Outcome , Progression-Free Survival
17.
Front Pharmacol ; 15: 1310231, 2024.
Article in English | MEDLINE | ID: mdl-38288442

ABSTRACT

The rhodopsin-like receptor GPR119 plays a crucial role in glucose homeostasis and is an emerging target for the treatment of type 2 diabetes mellitus. In this study, we analyzed the structure of GPR119 with the agonist APD597 bound and in complex with the downstream G protein trimer by single particle cryo-electron microscopy (cryo-EM). Structural comparison in combination with function assay revealed the conservative and specific effects of different kinds of GPR119 agonists. The activation mechanism of GPR119 was analyzed by comparing the conformational changes between the inactive and active states. The interaction between APD597 derivatives and synthetic agonists with GPR119 was analyzed by molecular docking technique, and the necessary structural framework was obtained. The above conclusions can provide structural and theoretical basis for the development of therapeutic drugs for type 2 diabetes mellitus.

18.
J Am Chem Soc ; 146(4): 2663-2672, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240637

ABSTRACT

The structurally sensitive amide II infrared (IR) bands of proteins provide valuable information about the hydrogen bonding of protein secondary structures, which is crucial for understanding protein dynamics and associated functions. However, deciphering protein structures from experimental amide II spectra relies on time-consuming quantum chemical calculations on tens of thousands of representative configurations in solvent water. Currently, the accurate simulation of amide II spectra for whole proteins remains a challenge. Here, we present a machine learning (ML)-based protocol designed to efficiently simulate the amide II IR spectra of various proteins with an accuracy comparable to experimental results. This protocol stands out as a cost-effective and efficient alternative for studying protein dynamics, including the identification of secondary structures and monitoring the dynamics of protein hydrogen bonding under different pH conditions and during protein folding process. Our method provides a valuable tool in the field of protein research, focusing on the study of dynamic properties of proteins, especially those related to hydrogen bonding, using amide II IR spectroscopy.


Subject(s)
Amides , Artificial Intelligence , Amides/chemistry , Hydrogen Bonding , Spectrophotometry, Infrared/methods , Proteins/chemistry
19.
Clin Interv Aging ; 19: 109-118, 2024.
Article in English | MEDLINE | ID: mdl-38250175

ABSTRACT

Purpose: To explore the predictive value of nutritional risk for all-cause death and functional outcomes among elderly acute stroke patients. Patients and Methods: A total of 479 elderly acute stroke patients were enrolled in this study. The nutritional risk of patients was screened by the GNRI and NRS-2002. The primary outcome was all-cause death, and the secondary outcome was poor prognosis defined as a modified Rankin Scale (mRS) score ≥3. Results: Based on the NRS-2002, patients with nutritional risk had a higher risk of all-cause death at 3 months (adjusted OR: 3.642, 95% CI 1.046~12.689) and at 3 years (adjusted OR: 2.266, 95% CI 1.259~4.076) and a higher risk of adverse functional outcomes at 3 months (adjusted OR: 2.748, 95% CI 1.518~4.972. Based on the GNRI, compared to those without nutritional risk, patients with mild malnutrition also had a higher risk of all-cause death at 3 months (adjusted OR: 7.186, 95% CI 1.550~33.315) and at 3 years (adjusted OR: 2.255, 95% CI 1.211~4.199) and a higher risk of adverse functional outcomes at 3 months (adjusted OR: 1.947, 95% CI 1.030~3.680), so patients with moderate and severe malnutrition had a higher risk of all-cause death at 3 months (adjusted OR: 6.535, 95% CI 1.380~30.945) and at 3 years (adjusted OR: 2.498, 95% CI 1.301~4.799) and a higher risk of adverse functional outcomes at 3 months (adjusted OR: 2.213, 95% CI 1.144~4.279). Conclusion: Nutritional risk increases the risk of poor short-term and long-term outcomes in elderly patients with acute stroke. For elderly stroke patients, we should pay attention to early nutritional risk screening, and effective intervention should be provided to improve the prognosis of such patients.


Subject(s)
Malnutrition , Pyrimidines , Stroke , Styrenes , Thiophenes , Aged , Humans , Follow-Up Studies , China
20.
ACS Mater Au ; 4(1): 14-29, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38221923

ABSTRACT

Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.

SELECTION OF CITATIONS
SEARCH DETAIL
...