Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
2.
iScience ; 27(1): 108622, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38205256

ABSTRACT

Insects are susceptible to elevated temperatures, resulting in impaired fertility, and shortened lifespan. This study investigated the genetic mechanisms underlying heat stress effects. We conducted RNA sequencing on Pteromalus puparum exposed to 25°C and 35°C, revealing transcriptional signatures. Weighted Gene Co-expression Network Analysis uncovered heat stress-associated modules, forming a regulatory network of 113 genes. The network is naturally divided into two subgroups, one linked to acute heat stress, including heat shock proteins (HSPs), and the other to chronic heat stress, involving lipogenesis genes. We identified an Xap5 Heat Shock Regulator (XHSR) gene as a crucial network component, validated through RNA interference and quantitative PCR assays. XHSR knockdown reduced wasps' lifespan while directly inducing HSPs and mediating lipogenesis gene induction. CRISPR/Cas9-mediated knockout of the Drosophila XHSR homolog reduced mutants' survival, highlighting its conserved role. This research sheds light on thermal tolerance mechanisms, offering potential applications in pest control amid global warming.

3.
Pest Manag Sci ; 80(3): 1219-1227, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899674

ABSTRACT

BACKGROUND: The ectoparasitic wasp Habrobracon hebetor (Hymenoptera, Braconidae) can parasitize various species of lepidopteran pests. To maximize its potential for biological control, it is necessary to investigate its gene function through genome engineering. RESULTS: To test the effectiveness of genome engineering system in H. hebetor, we injected the mixture of clustered regularly interspaced short palindromic repeats (CRISPR) -associated (Cas) 9 protein and single guide RNA(s) targeting gene white into embryos. The resulting mutants display a phenotype of eye pigment loss. The phenotype was caused by small indel and is heritable. Then, we compared some biological parameters between wildtype and mutant, and found there were no significant differences in other parameters except for the offspring female rate and adult longevity. In addition, cocoons could be used to extract genomic DNA for genotype during the gene editing process without causing unnecessary harm to H. hebetor. CONCLUSION: Our results demonstrate that the CRISPR/Cas9 system can be used for H. hebetor genome editing and it does not adversely affect biological parameters of the parasitoid wasps. We also provide a feasible non-invasive genotype detection method using genomic DNA extracted from cocoons. Our study introduces a novel tool and method for studying gene function in H. hebetor, and may contribute to better application of H. hebetor in biocontrol. © 2023 Society of Chemical Industry.


Subject(s)
Wasps , Animals , Female , Wasps/metabolism , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Mutagenesis , DNA
4.
J Craniofac Surg ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37934969

ABSTRACT

OBJECTIVE: This study aimed to evaluate the outcome of a technique-combined scar release, hard palate spacer graft with the recession of the lower eyelid retractors, lateral canthal suspension in the repair of cicatricial lower eyelid retraction, and entropion. METHODS: Records of 12 patients with cicatricial lower eyelid retraction and entropion who underwent the surgery from January 2019 to August 2021 were reviewed. Surgical techniques include the following procedures: release of scar, hard palate graft with recession of the lower eyelid retractors, and lateral canthal tightening to strengthen the support of the lower eyelid. The follow-up period was at least 12 months. Postoperative outcomes were evaluated by the improvement of lower eyelid retraction, resolution of eyelid entropion, and complications. RESULTS: All patients showed resolution in lower lid entropion, and lower eyelid retraction was significantly improved with a mean elevation of 2.93±0.82 mm. None of the patients had severe complications postoperatively, and both ocular surface symptoms and cosmetic appearance were significantly improved. CONCLUSIONS: The technique achieves long-term stable outcomes in cicatricial lower lid retraction and entropion repair with a low morbidity rate.

5.
Genome Res ; 33(9): 1554-1567, 2023 09.
Article in English | MEDLINE | ID: mdl-37798117

ABSTRACT

Animal venom systems have emerged as valuable models for investigating how novel polygenic phenotypes may arise from gene evolution by varying molecular mechanisms. However, a significant portion of venom genes produce alternative mRNA isoforms that have not been extensively characterized, hindering a comprehensive understanding of venom biology. In this study, we present a full-length isoform-level profiling workflow integrating multiple RNA sequencing technologies, allowing us to reconstruct a high-resolution transcriptome landscape of venom genes in the parasitoid wasp Pteromalus puparum Our findings demonstrate that more than half of the venom genes generate multiple isoforms within the venom gland. Through mass spectrometry analysis, we confirm that alternative splicing contributes to the diversity of venom proteins, acting as a mechanism for expanding the venom repertoire. Notably, we identified seven venom genes that exhibit distinct isoform usages between the venom gland and other tissues. Furthermore, evolutionary analyses of venom serpin3 and orcokinin further reveal that the co-option of an ancient isoform and a newly evolved isoform, respectively, contributes to venom recruitment, providing valuable insights into the genetic mechanisms driving venom evolution in parasitoid wasps. Overall, our study presents a comprehensive investigation of venom genes at the isoform level, significantly advancing our understanding of alternative isoforms in venom diversity and evolution and setting the stage for further in-depth research on venoms.


Subject(s)
Wasp Venoms , Wasps , Animals , Wasp Venoms/genetics , Wasps/genetics , Protein Isoforms/genetics , Transcriptome , Alternative Splicing
6.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37385595

ABSTRACT

Allergies have become an emerging public health problem worldwide. The most effective way to prevent allergies is to find the causative allergen at the source and avoid re-exposure. However, most of the current computational methods used to identify allergens were based on homology or conventional machine learning methods, which were inefficient and still had room to be improved for the detection of allergens with low homology. In addition, few methods based on deep learning were reported, although deep learning has been successfully applied to several tasks in protein sequence analysis. In the present work, a deep neural network-based model, called DeepAlgPro, was proposed to identify allergens. We showed its great accuracy and applicability to large-scale forecasts by comparing it to other available tools. Additionally, we used ablation experiments to demonstrate the critical importance of the convolutional module in our model. Moreover, further analyses showed that epitope features contributed to model decision-making, thus improving the model's interpretability. Finally, we found that DeepAlgPro was capable of detecting potential new allergens. Overall, DeepAlgPro can serve as powerful software for identifying allergens.


Subject(s)
Deep Learning , Hypersensitivity , Humans , Allergens , Neural Networks, Computer , Proteins/metabolism
7.
Toxins (Basel) ; 15(6)2023 06 03.
Article in English | MEDLINE | ID: mdl-37368678

ABSTRACT

Habrobracon hebetor is a parasitoid wasp capable of infesting many lepidopteran larvae. It uses venom proteins to immobilize host larvae and prevent host larval development, thus playing an important role in the biocontrol of lepidopteran pests. To identify and characterize its venom proteins, we developed a novel venom collection method using an artificial host (ACV), i.e., encapsulated amino acid solution in paraffin membrane, allowing parasitoid wasps to inject venom. We performed protein full mass spectrometry analysis of putative venom proteins collected from ACV and venom reservoirs (VRs) (control). To verify the accuracy of proteomic data, we also collected venom glands (VGs), Dufour's glands (DGs) and ovaries (OVs), and performed transcriptome analysis. In this paper, we identified 204 proteins in ACV via proteomic analysis; compared ACV putative venom proteins with those identified in VG, VR, and DG via proteome and transcriptome approaches; and verified a set of them using quantitative real-time polymerase chain reaction. Finally, 201 ACV proteins were identified as potential venom proteins. In addition, we screened 152 and 148 putative venom proteins identified in the VG transcriptome and the VR proteome against those in ACV, and found only 26 and 25 putative venom proteins, respectively, were overlapped with those in ACV. Altogether, our data suggest proteome analysis of ACV in combination with proteome-transcriptome analysis of other organs/tissues will provide the most comprehensive identification of true venom proteins in parasitoid wasps.


Subject(s)
Wasps , Animals , Wasps/chemistry , Proteomics , Proteome/metabolism , Multiomics , Wasp Venoms/chemistry , Larva/metabolism , Insect Proteins/metabolism , Host-Parasite Interactions
8.
Front Cell Dev Biol ; 11: 1166517, 2023.
Article in English | MEDLINE | ID: mdl-37325562

ABSTRACT

The linker histone H1 binds to the nucleosome core particle at the site where DNA enters and exits, and facilitates folding of the nucleosomes into a higher-order chromatin structure in eukaryotes. Additionally, some variant H1s promote specialized chromatin functions in cellular processes. Germline-specific H1 variants have been reported in some model species with diverse roles in chromatin structure changes during gametogenesis. In insects, the current understanding of germline-specific H1 variants comes mainly from the studies in Drosophila melanogaster, and the information on this set of genes in other non-model insects remains largely unknown. Here, we identify two H1 variants (PpH1V1 and PpH1V2) that are specifically predominantly expressed in the testis of the parasitoid wasp Pteromalus puparum. Evolutionary analyses suggest that these H1 variant genes evolve rapidly, and are generally maintained as a single copy in Hymenoptera. Disruption of PpH1V1 function in the late larval stage male by RNA interference experiments has no phenotype on spermatogenesis in the pupal testis, but results in abnormal chromatin structure and low sperm fertility in the adult seminal vesicle. In addition, PpH1V2 knockdown has no detectable effect on spermatogenesis or male fertility. Collectively, our discovery indicates distinct functions of male germline-enriched H1 variants between parasitoid wasp Pteromalus and Drosophila, providing new insights into the role of insect H1 variants in gametogenesis. This study also highlights the functional complexity of germline-specific H1s in animals.

9.
Front Physiol ; 14: 1187522, 2023.
Article in English | MEDLINE | ID: mdl-37153218

ABSTRACT

Ephestia elutella is a major pest responsible for significant damage to stored tobacco over many years. Here, we conduct a comparative genomic analysis on this pest, aiming to explore the genetic bases of environmental adaptation of this species. We find gene families associated with nutrient metabolism, detoxification, antioxidant defense and gustatory receptors are expanded in the E. elutella genome. Detailed phylogenetic analysis of P450 genes further reveals obvious duplications in the CYP3 clan in E. elutella compared to the closely related species, the Indianmeal moth Plodia interpunctella. We also identify 229 rapidly evolving genes and 207 positively selected genes in E. elutella, respectively, and highlight two positively selected heat shock protein 40 (Hsp40) genes. In addition, we find a number of species-specific genes related to diverse biological processes, such as mitochondria biology and development. These findings advance our understanding of the mechanisms underlying processes of environmental adaptation on E. elutella and will enable the development of novel pest management strategies.

10.
Sci Data ; 10(1): 159, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949061

ABSTRACT

The ectoparasitoid wasp Theocolax elegans is a cosmopolitan and generalist pteromalid parasitoid of several major storage insect pests, and can effectively suppress a host population in warehouses. However, little molecular information about this wasp is currently available. In this study, we assembled the genome of T. elegans using PacBio long-read sequencing, Illumina sequencing, and Hi-C methods. The genome assembly is 662.73 Mb in length with contig and scaffold N50 values of 1.15 Mb and 88.8 Mb, respectively. The genome contains 56.4% repeat sequences and 23,212 protein-coding genes were annotated. Phylogenomic analyses revealed that T. elegans diverged from the lineage leading to subfamily Pteromalinae (Nasonia vitripennis and Pteromalus puparum) approximately 110.5 million years ago. We identified 130 significantly expanded gene families, 34 contracted families, 248 fast-evolving genes, and 365 positively selected genes in T. elegans. Additionally, 260 olfactory receptors and 285 venom proteins were identified. This genome assembly provides valuable genetic bases for future investigations on evolution, molecular biology and application of T. elegans.


Subject(s)
Genome, Insect , Wasps , Animals , Chromosomes , Phylogeny , Repetitive Sequences, Nucleic Acid , Wasps/genetics , Wasps/metabolism
12.
Eur J Ophthalmol ; : 11206721221147953, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36562099

ABSTRACT

PURPOSE: To describe our experience of the supra-brow island flap pedicled with orbicularis oculi muscle technique for correcting orbit implant exposure. MATERIALS AND METHODS: This retrospective study reviewed 32 patients that underwent orbit implant exposure surgery using a supra-brow island flap pedicled with orbicularis oculi muscle. All data were reviewed from patients in Eye & ENT Hospital of Fudan University, Shanghai during January 2018 to July 2020. The patient demographics, the original etiology, surgical procedures, implant types, and follow-up interval were recorded. The primary outcome was the long-term coverage of the supra-brow island flap pedicled with orbicularis oculi muscle, and the post-surgical complications and management were secondary outcomes. RESULTS: 28 eyes of 28 patients had functional results and satisfactory cosmetic outcomes at final follow up(range, 9-29 months). Among the other 4 patients, the recurrence of exposure was recorded during the follow-up, two of these patients successfully underwent dermis fat grafts(DFGs), one recovered after conservative treatment, and one refused treatment. CONCLUSIONS: The supra-brow island flap pedicled with orbicularis oculi muscle is a technique available to manage orbital implant exposure when other simpler and more direct techniques have been tried and failed. PRECIS: A new flap for orbital implant exposure.

13.
Nat Commun ; 13(1): 6417, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302851

ABSTRACT

Parasitoid wasps are rapidly developing as a model for evolutionary biology. Here we present chromosomal genomes of two Anastatus wasps, A. japonicus and A. fulloi, and leverage these genomes to study two fundamental questions-genome size evolution and venom evolution. Anastatus shows a much larger genome than is known among other wasps, with unexpectedly recent bursts of LTR retrotransposons. Importantly, several genomic innovations, including Piwi gene family expansion, ubiquitous Piwi expression profiles, as well as transposable element-piRNA coevolution, have likely emerged for transposable element silencing to maintain genomic stability. Additionally, we show that the co-option evolution arose by expression shifts in the venom gland plays a dominant role in venom turnover. We also highlight the potential importance of non-venom genes that are coexpressed with venom genes during venom evolution. Our findings greatly advance the current understanding of genome size evolution and venom evolution, and these genomic resources will facilitate comparative genomics studies of insects in the future.


Subject(s)
Wasps , Animals , Wasps/genetics , Venoms , DNA Transposable Elements/genetics , Genomics , Genomic Instability/genetics
14.
iScience ; 25(9): 104873, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36039293

ABSTRACT

Genome size (GS) can vary considerably between phylogenetically close species, but the landscape of GS changes in insects remain largely unclear. To better understand the specific evolutionary factors that determine GS in insects, we examined flow cytometry-based published GS data from 1,326 insect species, spanning 700 genera, 155 families, and 21 orders. Model fitting showed that GS generally followed an Ornstein-Uhlenbeck adaptive evolutionary model in Insecta overall. Ancestral reconstruction indicated a likely GS of 1,069 Mb, suggesting that most insect clades appeared to undergo massive genome expansions or contractions. Quantification of genomic components in 56 species from nine families in four insect orders revealed that the proliferation of transposable elements contributed to high variation in GS between close species, such as within Coleoptera. This study sheds lights on the pattern of GS variation in insects and provides a better understanding of insect GS evolution.

15.
BMC Biol ; 20(1): 118, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35606775

ABSTRACT

BACKGROUND: A fundamental feature of parasitism is the nutritional exploitation of host organisms by their parasites. Parasitoid wasps lay eggs on arthropod hosts, exploiting them for nutrition to support larval development by using diverse effectors aimed at regulating host metabolism. However, the genetic components and molecular mechanisms at the basis of such exploitation, especially the utilization of host amino acid resources, remain largely unknown. To address this question, here, we present a chromosome-level genome assembly of the parasitoid wasp Cotesia chilonis and reconstruct its amino acid biosynthetic pathway. RESULTS: Analyses of the amino acid synthetic pathway indicate that C. chilonis lost the ability to synthesize ten amino acids, which was confirmed by feeding experiments with amino acid-depleted media. Of the ten pathways, nine are known to have been lost in the common ancestor of animals. We find that the ability to synthesize arginine was also lost in C. chilonis because of the absence of two key genes in the arginine synthesis pathway. Further analyses of the genomes of 72 arthropods species show that the loss of arginine synthesis is common in arthropods. Metabolomic analyses by UPLC-MS/MS reveal that the temporal concentrations of arginine, serine, tyrosine, and alanine are significantly higher in host (Chilo suppressalis) hemolymph at 3 days after parasitism, whereas the temporal levels of 5-hydroxylysine, glutamic acid, methionine, and lysine are significantly lower. We sequence the transcriptomes of a parasitized host and non-parasitized control. Differential gene expression analyses using these transcriptomes indicate that parasitoid wasps inhibit amino acid utilization and activate protein degradation in the host, likely resulting in the increase of amino acid content in host hemolymph. CONCLUSIONS: We sequenced the genome of a parasitoid wasp, C. chilonis, and revealed the features of trait loss in amino acid biosynthesis. Our work provides new insights into amino acid exploitation by parasitoid wasps, and this knowledge can specifically be used to design parasitoid artificial diets that potentially benefit mass rearing of parasitoids for pest control.


Subject(s)
Wasps , Amino Acids , Animals , Arginine , Chromatography, Liquid , Host-Parasite Interactions/genetics , Tandem Mass Spectrometry , Wasps/genetics
16.
Ann Plast Surg ; 88(1): 49-53, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34670965

ABSTRACT

BACKGROUND: Composite grafts have previously been reported to achieve a good outcome for nasal defect repair, but composite grafts have greater metabolic needs than simple skin. Therefore, the traditionally recommended size of a composite graft for nasal reconstruction is less than 1.5 cm in diameter. However, the distal nose is generally well supplied with blood vessels, which might support the use of larger composite grafts in such a highly vascularized recipient site. The aim of the article is to investigate whether a large skin-fat-fascia composite graft (larger than 2.0 cm) is viable for the repair of partial-thickness nasal defects. METHODS: From October 2017 to December 2019, 13 patients with partial-thickness nasal defects underwent nasal reconstruction using a large postauricular skin-fat-fascia composite graft. Cases were followed up for 3 to 14 months postoperatively. The aesthetic outcome was evaluated in comparison with preoperative digital images. RESULTS: Skin-fat-fascia composite grafts survived without graft necrosis, dermal fibrosis, or skin contraction in all cases. Favorable aesthetic outcomes were obtained in all patients, and no further revision surgery was need. CONCLUSIONS: A postauricular composite graft larger than 2.0 cm is a safe and effective reconstruction approach for partial-thickness nasal defects. This technique offers significant advantages in terms of no additional facial scar, no visible asymmetry on the face, no additional surgery for revision, and with mild scar in the donor site of the postauricular region.


Subject(s)
Rhinoplasty , Fascia , Humans , Nose/surgery , Retrospective Studies , Skin Transplantation , Surgical Flaps
17.
Mol Ecol Resour ; 22(1): 307-318, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34228883

ABSTRACT

The rice leaffolder Cnaphalocrocis exigua (Crambidae, Lepidoptera) is an important agricultural pest that damages rice crops and other members of related grass families. C. exigua exhibits a very similar morphological phenotype and feeding behaviour to C. medinalis, another species of rice leaffolder whose genome was recently reported. However, genomic information for C. exigua remains extremely limited. Here, we used a hybrid strategy combining different sequencing technologies, including Illumina, PacBio, 10× Genomics, and Hi-C scaffolding, to generate a high-quality chromosome-level genome assembly of C. exigua. We initially obtained a 798.8 Mb assembly with a contig N50 size of 2.9 Mb, and the N50 size was subsequently increased to 25.7 Mb using Hi-C technology to anchor 1413 scaffolds to 32 chromosomes. We detected a total of 97.7% Benchmarking Universal Single-Copy Orthologues (BUSCO) in the genome assembly, which was comprised of ~52% repetitive sequence and annotated 14,922 protein-coding genes. Of note, the Z and W sex chromosomes were assembled and identified. A comparative genomic analysis demonstrated that despite the high synteny observed between the two rice leaffolders, the species have distinct genomic features associated with expansion and contraction of gene families and selection pressure. In summary, our chromosome-level genome assembly and comparative genomic analysis of C. exigua provide novel insights into the evolution and ecology of this rice insect pests and offer useful information for pest control.


Subject(s)
Lepidoptera , Animals , Crops, Agricultural , Humans , Lepidoptera/genetics , Sequence Analysis, DNA , Sex Chromosomes , Synteny
18.
Nucleic Acids Res ; 50(D1): D1040-D1045, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34792158

ABSTRACT

Insects are the largest group of animals on the planet and have a huge impact on human life by providing resources, transmitting diseases, and damaging agricultural crop production. Recently, a large amount of insect genome and gene data has been generated. A comprehensive database is highly desirable for managing, sharing, and mining these resources. Here, we present an updated database, InsectBase 2.0 (http://v2.insect-genome.com/), covering 815 insect genomes, 25 805 transcriptomes and >16 million genes, including 15 045 111 coding sequences, 3 436 022 3'UTRs, 4 345 664 5'UTRs, 112 162 miRNAs and 1 293 430 lncRNAs. In addition, we used an in-house standard pipeline to annotate 1 434 653 genes belonging to 164 gene families; 215 986 potential horizontally transferred genes; and 419 KEGG pathways. Web services such as BLAST, JBrowse2 and Synteny Viewer are provided for searching and visualization. InsectBase 2.0 serves as a valuable platform for entomologists and researchers in the related communities of animal evolution and invertebrate comparative genomics.


Subject(s)
Databases, Genetic , Genome, Insect/genetics , Insecta/genetics , Software , Animals , Insecta/classification , MicroRNAs/genetics , Synteny/genetics
19.
Insect Sci ; 29(4): 1030-1046, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34687499

ABSTRACT

With proteomic analysis, we identified 379 egg surface proteins from an endoparasitoid, Cotesia chilonis. Proteins containing conserved enzymatic domains constitute a large proportion of egg surface components. Some proteins, such as superoxidase dismutase, homolog of C. rubecula 32-kDa protein, and immunoevasive protein-2A, are classical parasitism factors that have known functions in host immunity regulation. Melanization assays revealed that a novel egg surface protein, C. chilonis egg surface serpin domain-containing protein had the same function as a C. chilonis venom serpin, as both suppressed host melanization in a dose-dependent manner. C. chilonis egg surface serpin domain-containing protein is mainly transcribed in C. chilonis oocytes with follicular cells, and it is located on both the anterior and posterior sides of the mature egg surface. Additionally, we used LC-MS/MS to identify 586 binding proteins sourced from C. suppressalis plasma located on the eggshell surface of C. chilonis, which included some immunity-related proteins. These results not only indicate that C. chilonis uses its egg surface proteins to reduce the immune response of its host but also imply that endoparasitoid egg surface proteins might be a new parasitism factor involved in host immune regulation.


Subject(s)
Serpins , Wasps , Animals , Chromatography, Liquid , Host-Parasite Interactions , Immunity , Membrane Proteins/metabolism , Proteomics , Serpins/metabolism , Tandem Mass Spectrometry , Wasps/physiology
20.
Mol Biol Evol ; 38(12): 5539-5554, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34515790

ABSTRACT

Miniaturization has occurred in many animal lineages, including insects and vertebrates, as a widespread trend during animal evolution. Among Hymenoptera, miniaturization has taken place in some parasitoid wasp lineages independently, and may have contributed to the diversity of species. However, the genomic basis of miniaturization is little understood. Diverged approximately 200 Ma, Telenomus wasps (Platygastroidea) and Trichogramma wasps (Chalcidoidea) have both evolved to a highly reduced body size independently, representing a paradigmatic example of convergent evolution. Here, we report a high-quality chromosomal genome of Telenomus remus, a promising candidate for controlling Spodoptera frugiperda, a notorious pest that has recently caused severe crop damage. The T. remus genome (129 Mb) is characterized by a low density of repetitive sequence and a reduction of intron length, resulting in the shrinkage of genome size. We show that hundreds of genes evolved faster in two miniaturized parasitoids Trichogramma pretiosum and T. remus. Among them, 38 genes exhibit extremely accelerated evolutionary rates in these miniaturized wasps, possessing diverse functions in eye and wing development as well as cell size control. These genes also highlight potential roles in body size regulation. In sum, our analyses uncover a set of genes with accelerated evolutionary rates in Tri. pretiosum and T. remus, which might be responsible for their convergent adaptations to miniaturization, and thus expand our understanding on the evolutionary basis of miniaturization. Additionally, the genome of T. remus represents the first genome resource of superfamily Platygastroidea, and will facilitate future studies of Hymenoptera evolution and pest control.


Subject(s)
Wasps , Animals , Genomics , Spodoptera , Wasps/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...