Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(17): 2261-2282, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38318641

ABSTRACT

Porous organic cages (POCs) represent a notable category of porous materials, showing remarkable material properties due to their inherent porosity. Unlike extended frameworks which are constructed by strong covalent or coordination bonds, POCs are composed of discrete molecular units held together by weak intermolecular forces. Their structure and chemical traits can be systematically tailored, making them suitable for a range of applications including gas storage and separation, molecular separation and recognition, catalysis, and proton and ion conduction. This review provides a comprehensive overview of POCs, covering their synthesis methods, structure and properties, computational approaches, and applications, serving as a primer for those who are new to the domain. A special emphasis is placed on the growing role of computational methods, highlighting how advanced data-driven techniques and automation are increasingly aiding the rapid exploration and understanding of POCs. We conclude by addressing the prevailing challenges and future prospects in the field.

2.
Molecules ; 27(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35458767

ABSTRACT

Chiral vicinal diamines, a unique class of optically-active building blocks, play a crucial role in material design, pharmaceutical, and catalysis. Traditionally, their syntheses are all solvent-based approaches, which make organic solvent an indispensable part of their production. As part of our program aiming to develop chemical processes with reduced carbon footprints, we recently reported a highly practical and environmentally-friendly synthetic route to chiral vicinal diamines by solvent-free mechanochemical diaza-Cope rearrangement. We herein showed that a new protocol by co-milling with common laboratory solid additives, such as silica gel, can significantly enhance the efficiency of the reaction, compared to reactions in the absence of additives. One possible explanation is the Lewis acidic nature of additives that accelerates a key Schiff base formation step. Reaction monitoring experiments tracing all the reaction species, including reactants, intermediates, and product, suggested that the reaction profile is distinctly different from ball-milling reactions without additives. Collectively, this work demonstrated that additive effect is a powerful tool to manipulate a reaction pathway in mechanochemical diazo-Cope rearrangement pathway, and this is expected to find broad interest in organic synthesis using mechanical force as an energy input.


Subject(s)
Diamines , Mechanical Phenomena , Catalysis , Lewis Acids , Solvents
3.
Nat Commun ; 12(1): 6124, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34675210

ABSTRACT

A variety of organic cages with different geometries have been developed during the last decade, most of them exhibiting a single cavity. In contrast, the number of organic cages featuring a pair of cavities remains scarce. These structures may pave the way towards novel porous materials with emergent properties and functions.We herein report on rational design of a three-dimensional hexaformyl precursor 1, which exhibits two types of conformers, i.e. Conformer-1 and -2, with different cleft positions and sizes. Aided by molecular dynamics simulations, we select two triamino conformation capturers (denoted CC). Small-sized CC-1 selectively capture Conformer-1 by matching its cleft size, while the large-sized CC-2 is able to match and capture both conformers. This strategy allows the formation of three compounds with twin cavities, which we coin diphane. The self-assembly of diphane units results in superstructures with tunable proton conductivity, which reaches up to 1.37×10-5 S cm-1.

4.
Biotechnol Lett ; 43(8): 1625-1635, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993368

ABSTRACT

OBJECTIVE: To establish a temperature-induced chitosanase bacterial cell-surface display system to produce chitooligosaccharides (COSs) efficiently for industrial applications. RESULTS: Temperature-inducible chitosanase CSN46A bacterial surface display systems containing one or two copies of ice nucleation protein (InaQ-N) as anchoring motifs were successfully constructed on the basis of Escherichia coli and named as InaQ-N-CSN46A (1 copy) and 2InaQ-N-CSN46A (2 copies). The specific enzyme activity of 2InaQ-N-CSN46A reached 761.34 ± 0.78 U/g cell dry weight, which was 45.6% higher than that of InaQ-N-CSN46A. However, few proteins were detected in the 2InaQ-N-CSN46A hydrolysis system. Therefore, 2InaQ-N-CSN46A had higher hydrolysis efficiency and stability than InaQ-N-CSN46A. Gel permeation chromatography revealed that under the optimum enzymatic hydrolysis temperature, the final products were mainly chitobiose and chitotriose. Chitopentaose accumulated (77.62%) when the hydrolysis temperature reached 60 °C. FTIR and NMR analysis demonstrated that the structures of the two hydrolysis products were consistent with those of COSs. CONCLUSIONS: In this study, chitosanase was expressed on the surfaces of E. coli by increasing the induction temperature, and chitosan was hydrolysed directly without enzyme purification steps. This study provides a novel strategy for industrial COS production.


Subject(s)
Cell Surface Display Techniques/methods , Chitosan/metabolism , Escherichia coli , Glycoside Hydrolases , Oligosaccharides/metabolism , Recombinant Fusion Proteins , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL