Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Neural Regen Res ; 20(4): 1178-1191, 2025 Apr 01.
Article in English | MEDLINE | ID: mdl-38989955

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202504000-00032/figure1/v/2024-07-06T104127Z/r/image-tiff Microglia, the primary immune cells within the brain, have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system, including Parkinson's disease. Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity, but also exhibit remarkable anti-inflammatory properties. However, the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood. In this study, we developed perfluoropentane-based oxygen-loaded nanodroplets (PFP-OLNDs) and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo, and suppressed microglial activation in a mouse model of Parkinson's disease. Microglial suppression led to a reduction in the inflammatory response, oxidative stress, and cell migration capacity in vitro. Consequently, the neurotoxic effects were mitigated, which alleviated neuronal degeneration. Additionally, ultrahigh-performance liquid chromatography-tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming. We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1α pathway. Collectively, our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.

2.
Brain Behav ; 13(11): e3225, 2023 11.
Article in English | MEDLINE | ID: mdl-37654024

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common degenerative nervous system disease. At present, there are certain limitations in various treatment options aimed at preventing or delaying the progression of PD. Therefore, the exploration of new drugs for PD is beneficial. Mendelian randomization (MR) analysis can be used to explore the association between drugs and diseases. In this study, MR analysis was adopted to investigate the causal relationship between 23 drugs and PD. These drugs have been approved for the treatment of different diseases, such as salicylic acid and derivatives (collectively called salicylates, e.g., aspirin, used for fever and pain relief), antithrombotic agents (e.g., warfarin, aspirin, used for preventing thrombotic events). METHODS: The GWAS data for the 23 drugs were obtained from the UK Biobank (UKB) project, while the GWAS data for PD were sourced from FinnGen. Single-Nucleotide Polymorphisms (SNPs) were selected as instrumental variables (IVs). We first performed a series of quality control steps (including MR-PRESSO) to select the appropriate SNPs. Two-sample MR analysis was performed using five different methods, including inverse variance weighting (IVW) with random-effects model, weighted median, MR-Egger, simple model, and weighted model. At the same time, sensitivity analysis was carried out using the MR-Egger and Cochran's Q test to ensure the authenticity and reliability of the results. RESULTS: In MR-PRESSO, salicylates and antithrombotic agents showed statistically significant associations with PD, respectively. In the main MR analysis (IVW), there was a negative causal relationship between salicylates and PD (OR = 0.73, 95% CI = 0.54-0.98, p = .039). Similarly, there was a negative causal relationship between antithrombotic agents and PD (OR = 0.70, 95%CI = 0.52-0.96, p = .027). No statistically significant association was found between the remaining 21 drugs and PD. CONCLUSION: This MR study demonstrated that salicylates and antithrombotic agents can reduce the risk of PD, thus providing a novel avenue for future drug exploration in PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Fibrinolytic Agents , Mendelian Randomization Analysis , Reproducibility of Results , Aspirin/adverse effects , Salicylic Acid , Genome-Wide Association Study
3.
BMC Pharmacol Toxicol ; 24(1): 16, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882858

ABSTRACT

PURPOSE: Cisplatin is a widely used and effective chemotherapeutic agent for most solid malignant tumors. However, cisplatin-induced ototoxicity is a common adverse effect that limits the therapeutic efficacy of tumors in the clinic. To date, the specific mechanism of ototoxicity has not been fully elucidated, and the management of cisplatin-induced ototoxicity is also an urgent challenge. Recently, some authors believed that miR34a and mitophagy played a role in age-related and drug-induced hearing loss. Our study aimed to explore the involvement of miR-34a/DRP-1-mediated mitophagy in cisplatin-induced ototoxicity. METHODS: In this study, C57BL/6 mice and HEI-OC1 cells were treated with cisplatin. MiR-34a and DRP-1 levels were analyzed by qRT‒PCR and western blotting, and mitochondrial function was assessed via oxidative stress, JC-1 and ATP content. Subsequently, we detected DRP-1 levels and observed mitochondrial function by modulating miR-34a expression in HEI-OC1 cells to determine the effect of miR-34a on DRP-1-mediated mitophagy. RESULTS: MiR-34a expression increased and DRP-1 levels decreased in C57BL/6 mice and HEI-OC1 cells treated with cisplatin, and mitochondrial dysfunction was involved in this process. Furthermore, the miR-34a mimic decreased DRP-1 expression, enhanced cisplatin-induced ototoxicity and aggravated mitochondrial dysfunction. We further verified that the miR-34a inhibitor increased DRP-1 expression, partially protected against cisplatin-induced ototoxicity and improved mitochondrial function. CONCLUSION: MiR-34a/DRP-1-mediated mitophagy was related to cisplatin-induced ototoxicity and might be a novel target for investigating the treatment and protection of cisplatin-induced ototoxicity.


Subject(s)
Cisplatin , Dynamins , MicroRNAs , Ototoxicity , Animals , Mice , Cisplatin/toxicity , Mice, Inbred C57BL , MicroRNAs/genetics , Mitophagy , Ototoxicity/genetics , Oxidative Stress , Dynamins/genetics
4.
Neurobiol Dis ; 179: 106042, 2023 04.
Article in English | MEDLINE | ID: mdl-36804284

ABSTRACT

Mild hypothermia has been proven to inhibit microglia activation after TBI. Exosomal microRNA derived from microglia played a critical role in promoting neurite outgrowth and synapse recovery. Here, we aimed to investigate the role of microRNAs in microglial exosomes after hypothermia treatment on neuronal regeneration after TBI. For in vitro study, stretch-injured neurons were co-cultured with microglial exosomes. For in vivo study, C57BL/6 mice were under controlled cortical impact and injected with microglial exosomes. The results showed that MG-LPS-EXOHT increased the number of dendrite branches and total length of dendrites both in vitro and in vivo, elevated the expression levels of PSD-95 and GluR1 in stretch-injured neurons, and increased spine density in the pericontusion region. Moreover, MG-LPS-EXOHT improved motor function and motor coordination. A high-throughput sequencing showed that miR-20b-5p was upregulated in MG-LPS-EXOHT. Elevating miR-20b-5p promoted neurite outgrowth and synapse recovery of injured neurons both in vitro and in vivo. Following mechanistic study demonstrated that miR-20b-5p might promote neurite outgrowth and synapse recovery by directly targeting PTEN and activating PI3K-AKT pathway. In conclusion, mild hypothermia could modify the microRNA prolife of exosomes derived from LPS activated BV2 cells. Furthermore, high level of microglial exosomal miR-20b-5p induced by mild hypothermia could transfer into injured neurons and promote neurite outgrowth and synapse recovery after TBI via activating the PI3K-AKT pathway by suppressing PTEN expression.


Subject(s)
Brain Injuries, Traumatic , Hypothermia , MicroRNAs , Mice , Animals , Microglia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hypothermia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/metabolism , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuronal Outgrowth/physiology , Synapses/metabolism
5.
Sleep Med ; 102: 46-51, 2023 02.
Article in English | MEDLINE | ID: mdl-36599195

ABSTRACT

The aim of our present study was to explore the connectivity pattern change between the anterior cingulate cortex (ACC) and the voxels from the whole brain in chronic insomnia (CI). With region of interest (ROI)-based functional connectivity, a two-sample t-test was performed on individual FC correlation maps from two groups based on the resting-state fMRI data acquired from 57 CI patients and 46 healthy controls (GRF correction, voxel-level P < 0.001 and cluster-level P < 0.001). A correlation analysis was performed to evaluate the relationship between the clinical features and the abnormal FC. Compared to the healthy controls, the CI patients show increased connectivity between the ACC and the right middle frontal gyrus, with decreased connectivity between the ACC and the bilateral precuneus gyrus. Correlation analysis indicated that the decreased connectivity showed positive correlations with Self-Rating Anxiety Scale (SAS) scores. Our study shows the alterations of CI patients in the level of functional integration and may indicate the dysfunction of communication within brain regions of the default mode network (DMN). These changes and their correlation with negative emotions may provide additional evidence to understand the possible neural mechanisms of CI.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Magnetic Resonance Imaging , Gyrus Cinguli/diagnostic imaging , Rest , Brain , Brain Mapping
6.
Front Neurosci ; 16: 902077, 2022.
Article in English | MEDLINE | ID: mdl-35692426

ABSTRACT

The intracellular aggregation of α-synuclein in neurons/glia is considered to be a key step in the pathogenesis of synucleinopathy [including Parkinson's disease (PD), dementia with Lewy body (DLB), multiple system atrophy (MSA), etc.]. Increasing evidence indicates that the initial pathological α-synuclein aggregates can replicate themselves and propagate in a "seeding" manner to multiple areas of the brain and even to peripheral tissue, which makes it the most important biomarker for the diagnosis of synucleinopathies in recent years. The amplification and propagation capabilities of α-synuclein aggregates are very similar to those of prion-like diseases, which are based on the inherent self-recruitment capabilities of existing misfolded proteins. In vitro, the rapid recruitment process can be reproduced in a simplified model by adding a small amount of α-synuclein pre-formed fibrils to the monomer solution as fibril seeds, which may partially reveal the properties of α-synuclein aggregates. In this study, we explored the elongation rate of α-synuclein pre-formed fibrils under a quiescent incubation condition (rather than shaking/agitating). By using the ThT fluorescence assay, we compared and quantified the elongation fluorescence curves to explore the factors that affect fibril elongation. These factors include proteins' concentration, temperature, NaCl strength, SDS, temperature pretreatment, and so on. Our work further describes the elongation of α-synuclein fibrils under quiescent incubation conditions. This may have important implications for the in vitro amplification and preservation of α-synuclein aggregates to further understand the prion-like transmission mechanism of PD.

7.
Neuroscience ; 491: 98-109, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35367291

ABSTRACT

Our previous studies revealed that miR-34a suppresses autophagy in the ageing cochlea, which correlates with cochlear hair cell loss and age-related hearing loss (AHL). However, the mechanisms underlying miR-34a regulation of autophagy in the cochlea remain unclear. Here, we show that nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy, was regulated by miR-34a in HEI-OC1 cells. Moreover, ATG9A, one of the main targets of miR-34a, was shown to interact with TFEB and thus promote its nuclear translocation in HEI-OC1 cells. Rapamycin rescued the inhibition of TFEB nuclear translocation induced by miR-34a/ATG9A activation, restored autophagic flux and consequently prevented HEI-OC1 cell death. Long-term supplementation with rapamycin attenuated outer hair cells (OHCs) and inner hair cell synaptic ribbons, and delayed AHL in C57BL/6 mice. Most importantly, rapamycin partially restored TFEB's nuclear localization and autophagic flux in OHCs of the ageing cochlea. These findings open new avenues for protection against AHL through miR-34a/ATG9a/TFEB modulation of autophagy.


Subject(s)
MicroRNAs , Presbycusis , Animals , Autophagy/physiology , Autophagy-Related Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Hair Cells, Auditory/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Sirolimus/pharmacology , Vesicular Transport Proteins/metabolism
8.
Opt Express ; 30(5): 8104-8114, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299558

ABSTRACT

A compact and robust Fabry-Perot interferometer (FPI) based on polymer core is proposed and experimentally demonstrated. The fabrication is low-cost and has simple processes, including fusion splicing and polymer injection. Its characteristic is that the polymer fills the entire capillary core, which is easy to demodulate, and provides a good platform for the refractive index measurement of the polymer after curing. The experimental result shows a linear temperature sensitivity of 1226.64 pm/°C between 39°C and 54°C. Furthermore, we also used the Vernier effect to improve the temperature sensitivity as high as -15.617 nm/°C. The proposed FPI structure provides potential application in the research of sensors and polymer optical fibers.

9.
Free Radic Biol Med ; 179: 229-241, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34801666

ABSTRACT

Nitric oxide (NO) is critically involved in the regulation of a wide variety of physiological and pathophysiological processes. However, the role of NO in the pathogenesis of noise-induced hearing loss (NIHL) is complex and remains controversial. Here we reported that treatment of CBA/J mice with l-arginine, a physiological precursor of NO, significantly reduced noise-induced reactive oxygen species accumulation in outer hair cells (OHCs), attenuated noise-induced loss of OHCs and NIHL consequently. Conversely, pharmacological inhibition of endothelial nitric oxide synthase exacerbated noise-induced loss of OHCs and aggravated NIHL. In HEI-OC1 cells, NO also showed substantial protection against H2O2-induced oxidative stress and cytotoxicity. Mechanistically, NO increased S-nitrosylation of pyruvate kinase M2 (PKM2) and inhibited its activity, which thus diverted glucose metabolic flux from glycolysis into the pentose phosphate pathway to increase production of reducing equivalents (NADPH and GSH) and eventually prevented H2O2-induced oxidative damage. These findings open new avenues for protection of cochlear hair cells from oxidative stress and prevention of NIHL through NO modulation of PKM2 and glucose metabolism reprogramming.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Cochlea , Glucose/toxicity , Hair Cells, Auditory, Outer , Hydrogen Peroxide/toxicity , Mice , Mice, Inbred CBA , Nitric Oxide
10.
Toxicol Lett ; 349: 115-123, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34089817

ABSTRACT

Cisplatin, the most widely used platinum-based anticancer drug, often causes progressive and irreversible sensorineural hearing loss in cancer patients. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. Nicotinamide adenine dinucleotide (NAD+), a co-substrate for the sirtuin family and PARPs, has emerged as a potent therapeutic molecular target in various diseases. In our investigates, we observed that NAD+ level was changed in the cochlear explants of mice treated with cisplatin. Supplementation of a specific inhibitor (TES-1025) of α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), a rate-limiting enzyme of NAD+de novo synthesis pathway, promoted SIRT1 activity, increased mtDNA contents and enhanced AMPK expression, thus significantly reducing hair cells loss and deformation. The protection was blocked by EX527, a specific SIRT1 inhibitor. Meanwhile, the use of NMN, a precursor of NAD+ salvage synthesis pathway, had shown beneficial effect on hair cell under cisplatin administration, effectively suppressing PARP1. In vivo experiments confirmed the hair cell protection of NAD+ modulators in cisplatin treated mice and zebrafish. In conclusion, we demonstrated that modulation of NAD+ biosynthesis via the de novo synthesis pathway and the salvage synthesis pathway could both prevent ototoxicity of cisplatin. These results suggested that direct modulation of cellular NAD+ levels could be a promising therapeutic approach for protection of hearing from cisplatin-induced ototoxicity.


Subject(s)
Enzyme Inhibitors/pharmacology , Hair Cells, Auditory/drug effects , Hearing Loss/prevention & control , Hearing/drug effects , NAD/biosynthesis , Ototoxicity/prevention & control , Sirtuin 1/metabolism , Animals , Animals, Genetically Modified , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/metabolism , Cisplatin , Disease Models, Animal , Enzyme Activation , Hair Cells, Auditory/enzymology , Hair Cells, Auditory/pathology , Hearing Loss/chemically induced , Hearing Loss/enzymology , Hearing Loss/physiopathology , Lateral Line System/drug effects , Lateral Line System/enzymology , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , Ototoxicity/enzymology , Ototoxicity/etiology , Ototoxicity/physiopathology , Zebrafish
11.
Neural Regen Res ; 16(12): 2521-2527, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33907043

ABSTRACT

The expression of major histocompatibility complex class I (MHC-I), a key antigen-presenting protein, can be induced in dopaminergic neurons in the substantia nigra, thus indicating its possible involvement in the occurrence and development of Parkinson's disease. However, it remains unclear whether oxidative stress induces Parkinson's disease through the MHC-I pathway. In the present study, polymerase chain reaction and western blot assays were used to determine the expression of MHC-I in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. The findings revealed that MHC-I was expressed in both models. To detect whether the expression of MHC-I was able to trigger the infiltration of cytotoxic T cells, immunofluorescence staining was used to detect cytotoxic cluster of differentiation 8 (CD8)+ T cell infiltration in the substantia nigra of MPTP-treated mice. The results indicated that the presentation of MHC-I in dopaminergic neurons was indeed accompanied by an increase in the number of CD8+ T cells. Moreover, in MPTP-induced Parkinson's disease model mice, the genetic knockdown of endogenous MHC-I, which was caused by injecting specific adenovirus into the substantia nigra, led to a significant reduction in CD8+ T cell infiltration and alleviated dopaminergic neuronal death. To further investigate the molecular mechanisms of oxidative stress-induced MHC-I presentation, the expression of PTEN-induced kinase 1 (PINK1) was silenced in MPP+-treated SH-SY5Y cells using specific small interfering RNA (siRNA), and there was more presentation of MHC-I in these cells compared with control siRNA-treated cells. Taken together, MPP+-/MPTP-induced oxidative stress can trigger MHC-I presentation and autoimmune activation, thus rendering dopaminergic neurons susceptible to immune cells and degeneration. This may be one of the mechanisms of oxidative stress-induced Parkinson's disease, and implies the potential neuroprotective role of PINK1 in oxidative stress-induced MHC-I presentation. All animal experiments were approved by the Southern Medical University Ethics Committee (No. 81802040, approved on February 25, 2018).

12.
Neurosci Bull ; 37(5): 657-668, 2021 May.
Article in English | MEDLINE | ID: mdl-33415566

ABSTRACT

Oxidative stress is the key determinant in the pathogenesis of noise-induced hearing loss (NIHL). Given that cellular defense against oxidative stress is an energy-consuming process, the aim of the present study was to investigate whether increasing energy availability by glucose supplementation protects cochlear hair cells against oxidative stress and attenuates NIHL. Our results revealed that glucose supplementation reduced the noise-induced formation of reactive oxygen species (ROS) and consequently attenuated noise-induced loss of outer hair cells, inner hair cell synaptic ribbons, and NIHL in CBA/J mice. In cochlear explants, glucose supplementation increased the levels of ATP and NADPH, as well as attenuating H2O2-induced ROS production and cytotoxicity. Moreover, pharmacological inhibition of glucose transporter type 1 activity abolished the protective effects of glucose against oxidative stress in HEI-OC1 cells. These findings suggest that energy availability is crucial for oxidative stress resistance and glucose supplementation offers a simple and effective approach for the protection of cochlear hair cells against oxidative stress and NIHL.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Glucose/toxicity , Hair Cells, Auditory , Hearing Loss, Noise-Induced/prevention & control , Hydrogen Peroxide/toxicity , Mice , Mice, Inbred CBA , Oxidative Stress
13.
FASEB J ; 34(11): 15047-15061, 2020 11.
Article in English | MEDLINE | ID: mdl-32954540

ABSTRACT

Tristetraprolin (TTP), an RNA-binding protein encoded by the ZFP36 gene, is vital for neural differentiation; however, its involvement in neurodegenerative diseases such as Parkinson's disease (PD) remains unclear. To explore the role of TTP in PD, an in vitro 1-methyl-4-phenylpyridinium (MPP+ ) cell model and an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of PD were used. Transfection of small interfering (si)-TTP RNA upregulated pro-oxidative NOX2 expression and ROS formation, downregulated anti-oxidative GSH and SOD activity;si-TTP upregulated pro-apoptotic cleaved-caspase-3 expression, and downregulated antiapoptotic Bcl-2 expression; while overexpression (OE)-TTP lentivirus caused opposite effects. Through database prediction, luciferase experiment, RNA immunoprecipitation (RIP), and mRNA stability analysis, we evaluated the potential binding sites of TTP to 3'-untranslated regions (3'-UTR) of NOX2 mRNA. TTP affected the NOX2 luciferase activity by binding to two sites in the NOX2 3'-UTR. RIP-qPCR confirmed TTP binding to both sites, with a higher affinity for site-2. In addition, TTP reduced the NOX2 mRNA stability. si-NOX2 and antioxidant N-acetyl cysteine (NAC) reversed si-TTP-induced cell apoptosis. In MPTP-treated mice, TTP expression increased and was co-located with dopaminergic neurons. TTP also inhibited NOX2 and decreased the oxidative stress in vivo. In conclusion, TTP protects against dopaminergic oxidative injury by promoting NOX2 mRNA degradation in the MPP+ /MPTP model of PD, suggesting that TTP could be a potential therapeutic target for regulating the oxidative stress in PD.


Subject(s)
Dopaminergic Neurons/drug effects , NADPH Oxidase 2/chemistry , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , RNA, Messenger/chemistry , Tristetraprolin/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Apoptosis , Dopaminergic Neurons/enzymology , Dopaminergic Neurons/pathology , Humans , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neurotoxins/toxicity , Parkinson Disease/enzymology , Parkinson Disease/etiology , Parkinson Disease/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Disaster Med Public Health Prep ; 14(6): 776-781, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32375909

ABSTRACT

OBJECTIVES: In December 2019, a new type of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared in Wuhan, China. Serious outbreaks of coronavirus disease 2019 (COVID-19), related to the SARS-CoV-2 virus, have occurred throughout China and the world. Therefore, we intend to shed light on its potential clinical and epidemiological characteristics. METHODS: In this retrospective study, we included 50 confirmed fatal cases of SARS-CoV-2 reported on Chinese official media networks from January 16, 2020, to February 5, 2020. All the cases were confirmed by local qualified medical and health institutions. Specific information has been released through official channels. According to the contents of the reports, we recorded in detail the gender, age, first symptom date, death date, primary symptoms, chronic fundamental diseases, and other data of the patients, and carried out analyses and discussion. RESULTS: In total, 50 fatal cases were reported: median age was 70 y old, and males were 2.33 times more likely to die than females. The median number of days from the first symptom to death was 13, and that length of time tended to be shorter among people aged 65 and older compared with those younger than 65 (12 days vs 17 days; P = 0.046). Therefore, the older patients had fewer number of days from the first symptom to death (r = -0.40; P = 0.012). CONCLUSIONS: In our study, we found that most of the deaths were elderly men with chronic fundamental diseases, and their COVID-19 progression to death time was shorter. At the same time, we demonstrated that older men are more likely to become infected with COVID-19, and the risk of death is positively correlated with age.


Subject(s)
COVID-19/mortality , COVID-19/physiopathology , Age Distribution , Aged , China/epidemiology , Comorbidity , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Xenopus Proteins , Zinc Finger Protein Gli3
15.
Front Cell Neurosci ; 14: 620020, 2020.
Article in English | MEDLINE | ID: mdl-33536877

ABSTRACT

Autophagy dysfunction has been directly linked with the onset and progression of Parkinson's disease (PD), but the underlying mechanisms are not well understood. High-mobility group A1 (HMGA1), well-known chromatin remodeling proteins, play pivotal roles in diverse biological processes and diseases. Their function in neural cell death in PD, however, have not yet been fully elucidated. Here, we report that HMGA1 is highly induced during dopaminergic cell death in vitro and mice models of PD in vivo. Functional studies using genetic knockdown of endogenous HMGA1 show that HMGA1 signaling inhibition accelerates neural cell death, at least partially through aggravating MPP+-induced autophagic flux reduction resulting from partial block in autophagic flux at the terminal stages, indicating a novel potential neuroprotective role for HMGA1 in dopaminergic neurons death. MicroRNA-103/107 (miR-103/107) family, which is highly expressed in neuron, coordinately ensures proper end-stage autophagy. We further illustrate that MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced HMGA1 elevation counterparts the effect of miR-103/107 downregulation by directly binding to their promoters, respectively, sustaining their expression in MPP+-damaged MN9D cells and modulates autophagy through CDK5R1/CDK5 signaling pathway. We also find that HMGA1 is a direct target of miR-103/107 family. Thus, our results suggest that HMGA1 forms a negative feedback loop with miR-103/107-CDK5R1/CDK5 signaling to regulate the MPP+/MPTP-induced autophagy impairment and neural cell death. Collectively, we identify a paradigm for compensatory neuroprotective HMGA1 signaling in dopaminergic neurons that could have important therapeutic implications for PD.

16.
Exp Cell Res ; 384(1): 111614, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31499060

ABSTRACT

Autophagy has been shown to be critically associated with the central mechanisms underlying Parkinson's disease (PD), while the mechanisms contributing to the imbalance of autophagy remain unclear. Small nucleolar RNA host gene 1 (SNHG1), a well-studied long noncoding RNA, has been reported to be significantly increased in PD. The potential biological functions of SNHG1 in the regulation of neuronal autophagy and cell death in PD, however, have not yet been completely elucidated. In this study, we examined the existence of regulatory networks involving SNHG1, the miR-221/222 cluster and the cyclin-dependent kinase inhibitor 1B (CDKN1B/p27)/mammalian target of rapamycin (mTOR) signaling pathway in PD. We observed that SNHG1 expression was gradually upregulated in PD cellular and animal models. Furthermore, silencing SNHG1 promoted autophagy and prevented MPP+-induced cell death, similar to the overexpression of the miR-221/222 cluster. Mechanistically, SNHG1 competitively binds to the miR-221/222 cluster and indirectly regulates the expression of p27/mTOR. In conclusion, these results demonstrated that downregulation of SNHG1 attenuated MPP+-induced decreases in LC3-II (an autophagic marker) levels and cytotoxicity through the miR-221/222/p27/mTOR pathway, suggesting that SNHG1 may be a therapeutic target for neuroprotection and disease treatment in PD.


Subject(s)
Autophagy/genetics , Cell Death/genetics , Down-Regulation/genetics , Parkinson Disease/genetics , RNA, Long Noncoding/genetics , Signal Transduction/genetics , Animals , Cell Line , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Neurons/pathology , Proliferating Cell Nuclear Antigen/genetics , TOR Serine-Threonine Kinases/genetics
17.
Neurobiol Aging ; 80: 127-137, 2019 08.
Article in English | MEDLINE | ID: mdl-31170533

ABSTRACT

Age-related hearing loss (AHL) is typically caused by the irreversible death of hair cells (HCs). Autophagy is a constitutive pathway to strengthen cell survival under normal or stress condition. Our previous work suggested that impaired autophagy played an important role in the development of AHL in C57BL/6 mice, although the underlying mechanism of autophagy in AHL still needs to be investigated. SIRT1 as an important regulator involves in AHL and is also a regulator of autophagy. Thus, we hypothesized that the modulation between SIRT1 and autophagy contribute to HC death and the progressive hearing dysfunction in aging. In the auditory cell line HEI-OC1, SIRT1 modulated autophagosome induction because of SIRT1 deacetylating a core autophagy protein ATG9A. The deacetylation of ATG9A not only affects the autophagosome membrane formation but also acts as a sensor of endoplasmic reticulum (ER) stress inducing autophagy. Moreover, the silencing of SIRT1 facilitated cell death via autophagy inhibition, whereas SIRT1 and autophagy activation reversed the SIRT1 inhibition media cell death. Notably, resveratrol, the first natural agonist of SIRT1, altered the organ of Corti autophagy impairment of the 12-month-old C57BL/6 mice and delayed AHL. The activation of SIRT1 modulates the deacetylation status of ATG9A, which acts as a sensor of ER stress, providing a novel perspective in elucidating the link between ER stress and autophagy in aging. Because SIRT1 activation restores autophagy with reduced HC death and hearing loss, it could be used as a strategy to delay AHL.


Subject(s)
Autophagy/physiology , Hair Cells, Auditory , Hearing Loss, Sensorineural/prevention & control , Sirtuin 1/physiology , Acetylation , Aging , Animals , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/physiology , Endoplasmic Reticulum Stress , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice, Inbred C57BL , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/physiology
19.
Int J Biol Macromol ; 120(Pt A): 985-991, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30171955

ABSTRACT

Glioma is one of the most frequent intracranial malignant tumors. Abnormal expression of microRNAs usually contributes to the development and progression of glioma. In the current study, we explored the role and underlying mechanism of miR-497 in glioma. We revealed that miR-497 expression was significantly down-regulated in glioma tissues and cell lines. Reduced expression of miR-497 was associated with poor disease-free and over-all survival rate. Restoration of miR-497 decreased glioma cell growth and invasion both in vitro and in vivo. The oncogene Wnt3a was identified as a downstream target of miR-497 by using luciferase and western blot assays. Knockdown of Wnt3a mimicked the effect of miR-497 in glioma cells. In summary, our study demonstrated that miR-497 may function as a tumor suppressor in glioma and suggested that miR-497 is a potential therapeutic target for glioma patients.


Subject(s)
Cell Proliferation/genetics , Glioma/genetics , MicroRNAs/genetics , Wnt3A Protein/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Glioma/pathology , Humans , JNK Mitogen-Activated Protein Kinases/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Signal Transduction/genetics
20.
Cell Death Dis ; 9(8): 803, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038357

ABSTRACT

The role of microglial-mediated sustained neuroinflammation in the onset and progression of Parkinson's disease (PD) is well established, but the mechanisms contributing to microglial activation remain unclear. LincRNA-p21, a well studied long intergenic noncoding RNA (lincRNA), plays pivotal roles in diverse biological processes and diseases. Its role in microglial activation and inflammation-induced neurotoxicity, however, has not yet been fully elucidated. Here, we report that lincRNA-p21 promotes microglial activation through a p53-dependent transcriptional pathway. We further demonstrate that lincRNA-p21 competitively binds to the miR-181 family and induces microglial activation through the miR-181/PKC-δ pathway. Moreover, PKC-δ induction further increases the expression of p53/lincRNA-p21 and thus forms a circuit. Taken together, our results suggest that p53/lincRNA-p21, together with miR-181/PKC-δ, form a double-negative feedback loop that facilitates sustained microglial activation and the deterioration of neurodegeneration.


Subject(s)
MPTP Poisoning/pathology , MicroRNAs/metabolism , Microglia/metabolism , RNA, Long Noncoding/metabolism , 3' Untranslated Regions , Animals , Cell Line , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , MPTP Poisoning/metabolism , Mice , Mice, Inbred C57BL , Protein Kinase C-delta/antagonists & inhibitors , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL