Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
2.
Immunity ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38640930

ABSTRACT

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.

3.
Genome Med ; 16(1): 60, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658971

ABSTRACT

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Subject(s)
Macrophages , Neuroendocrine Tumors , Pituitary Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/metabolism , Pituitary Neoplasms/genetics , Pituitary Neoplasms/immunology , Pituitary Neoplasms/pathology , Pituitary Neoplasms/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Phenotype , Apoptosis/genetics , Cell Lineage/genetics
4.
Immunity ; 57(3): 528-540.e6, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38417442

ABSTRACT

RNA splicing is involved in cancer initiation and progression, but how it influences host antitumor immunity in the metabolically abnormal tumor microenvironment (TME) remains unclear. Here, we demonstrate that lactate modulates Foxp3-dependent RNA splicing to maintain the phenotypic and functional status of tumor-infiltrating regulatory T (Treg) cells via CTLA-4. RNA splicing in Treg cells was correlated with the Treg cell signatures in the TME. Ubiquitin-specific peptidase 39 (USP39), a component of the RNA splicing machinery, maintained RNA-splicing-mediated CTLA-4 expression to control Treg cell function. Mechanistically, lactate promoted USP39-mediated RNA splicing to facilitate CTLA-4 expression in a Foxp3-dependent manner. Moreover, the efficiency of CTLA-4 RNA splicing was increased in tumor-infiltrating Treg cells from patients with colorectal cancer. These findings highlight the immunological relevance of RNA splicing in Treg cells and provide important insights into the environmental mechanism governing CTLA-4 expression in Treg cells.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , CTLA-4 Antigen , Forkhead Transcription Factors/genetics , Lactic Acid/metabolism , Lymphocytes, Tumor-Infiltrating , Neoplasms/genetics , Neoplasms/metabolism , Tumor Microenvironment , Ubiquitin-Specific Proteases/metabolism
5.
Cancer Res ; 84(8): 1210-1220, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38315776

ABSTRACT

The tumor microenvironment (TME) represents a complex network in which tumor cells communicate not only with each other but also with stromal and immune cells. The intercellular interactions in the TME contribute to tumor initiation, progression, metastasis, and treatment outcome. Recent advances in spatial transcriptomics (ST) have revolutionized the molecular understanding of the TME at the spatial level. A comprehensive interactive analysis resource specifically designed for characterizing the spatial TME could facilitate further advances using ST. In this study, we collected 296 ST slides covering 19 cancer types and developed a computational pipeline to delineate the spatial structure along the malignant-boundary-nonmalignant axis. The pipeline identified differentially expressed genes and their functional enrichment, deconvoluted the cellular composition of the TME, reconstructed cell type-specific gene expression profiles at the sub-spot level, and performed cell-cell interaction analysis. Finally, the user-friendly database SpatialTME (http://www.spatialtme.yelab.site/) was constructed to provide search, visualization, and downloadable results. These detailed analyses are able to reveal the heterogeneous regulatory network of the spatial microenvironment and elucidate associations between spatial features and tumor development or response to therapy, offering a valuable resource to study the complex TME. SIGNIFICANCE: SpatialTME provides spatial structure, cellular composition, expression, function, and cell-cell interaction information to enable investigations into the tumor microenvironment at the spatial level to advance understanding of cancer development and treatment.


Subject(s)
Gene Expression Profiling , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Gene Expression , Cell Transformation, Neoplastic , Internet
6.
BMC Med ; 22(1): 24, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38229080

ABSTRACT

BACKGROUND: Pyroptosis, mediated by gasdermins with the release of multiple inflammatory cytokines, has emerged as playing an important role in targeted therapy and immunotherapy due to its effectiveness at inhibiting tumor growth. Melanoma is one of the most commonly used models for immunotherapy development, though an inadequate immune response can occur. Moreover, the development of pyroptosis-related therapy and combinations with other therapeutic strategies is limited due to insufficient understanding of the role of pyroptosis in the context of different tumor immune microenvironments (TMEs). METHODS: Here, we present a computational model (pyroptosis-related gene score, PScore) to assess the pyroptosis status. We applied PScore to 1388 melanoma samples in our in-house cohort and eight other publicly available independent cohorts and then calculated its prognostic power of and potential as a predictive marker of immunotherapy efficacy. Furthermore, we performed association analysis for PScore and the characteristics of the TME by using bulk, single-cell, and spatial transcriptomics and assessed the association of PScore with mutation status, which contributes to targeted therapy. RESULTS: Pyroptosis-related genes (PRGs) showed distinct expression patterns and prognostic predictive ability in melanoma. Most PRGs were associated with better survival in metastatic melanoma. Our PScore model based on genes associated with prognosis exhibits robust performance in survival prediction in multiple metastatic melanoma cohorts. We also found PScore to be associated with BRAF mutation and correlate positively with multiple molecular signatures, such as KRAS signaling and the IFN gamma response pathway. Based on our data, melanoma with an immune-enriched TME had a higher PScore than melanoma with an immune-depleted or fibrotic TME. Additionally, monocytes had the highest PScore and malignant cells and fibroblasts the lowest PScore based on single-cell and spatial transcriptome analyses. Finally, a higher PScore was associated with better therapeutic efficacy of immune checkpoint blockade, suggesting the potential of pyroptosis to serve as a marker of immunotherapy response. CONCLUSIONS: Collectively, our findings indicate that pyroptosis is a prognostic factor and is associated with the immune response in metastatic melanoma, as based on multiomics data. Our results provide a theoretical basis for drug combination and reveal potential immunotherapy response markers.


Subject(s)
Melanoma , Humans , Melanoma/genetics , Melanoma/therapy , Multiomics , Pyroptosis/genetics , Tumor Microenvironment/genetics , Immunotherapy , Prognosis
7.
Cancer Res ; 84(2): 192-210, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38225927

ABSTRACT

Stromal cells are physiologically essential components of the tumor microenvironment (TME) that mediates tumor development and therapeutic resistance. Development of a logical and unified system for stromal cell type identification and characterization of corresponding functional properties could help design antitumor strategies that target stromal cells. Here, we performed a pan-cancer analysis of 214,972 nonimmune stromal cells using single-cell RNA sequencing from 258 patients across 16 cancer types and analyzed spatial transcriptomics from 16 patients across seven cancer types, including six patients receiving anti-PD-1 treatment. This analysis uncovered distinct features of 39 stromal subsets across cancer types, including various functional modules, spatial locations, and clinical and therapeutic relevance. Tumor-associated PGF+ endothelial tip cells with elevated epithelial-mesenchymal transition features were enriched in immune-depleted TME and associated with poor prognosis. Fibrogenic and vascular pericytes (PC) derived from FABP4+ progenitors were two distinct tumor-associated PC subpopulations that strongly interacted with PGF+ tips, resulting in excess extracellular matrix (ECM) abundance and dysfunctional vasculature. Importantly, ECM-related cancer-associated fibroblasts enriched at the tumor boundary acted as a barrier to exclude immune cells, interacted with malignant cells to promote tumor progression, and regulated exhausted CD8+ T cells via immune checkpoint ligand-receptors (e.g., LGALS9/TIM-3) to promote immune escape. In addition, an interactive web-based tool (http://www.scpanstroma.yelab.site/) was developed for accessing, visualizing, and analyzing stromal data. Taken together, this study provides a systematic view of the highly heterogeneous stromal populations across cancer types and suggests future avenues for designing therapies to overcome the tumor-promoting functions of stromal cells. SIGNIFICANCE: Comprehensive characterization of tumor-associated nonimmune stromal cells provides a robust resource for dissecting tumor microenvironment complexity and guiding stroma-targeted therapy development across multiple human cancer types.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/genetics , Neoplasms/therapy , Gene Expression Profiling , CD8-Positive T-Lymphocytes
8.
J Immunother Cancer ; 11(11)2023 11 28.
Article in English | MEDLINE | ID: mdl-38016720

ABSTRACT

BACKGROUND: Dynamic alterations of the tumor immune microenvironment in esophageal squamous cell carcinoma (ESCC) after different neoadjuvant therapies were understudied. METHODS: We used mass cytometry with a 42-antibody panel for 6 adjacent normal esophageal mucosa and 26 tumor samples (treatment-naïve, n=12; postneoadjuvant, n=14) from patients with ESCC. Single-cell RNA sequencing of previous studies and bulk RNA sequencing from The Cancer Genome Atlas were analyzed, flow cytometry, immunohistochemistry, and immunofluorescence analyses were performed. RESULTS: Poor tumor regression was observed in the neoadjuvant chemotherapy group. Radiotherapy-based regimens enhanced CD8+ T cells but diminished regulatory T cells and promoted the ratio of effector memory to central memory T cells. Immune checkpoint blockade augmented NK cell activation and cytotoxicity by increasing the frequency of CD16+ NK cells. We discovered a novel CCR4+CCR6+ macrophage subset that correlated with the enrichment of corresponding chemokines (CCL3/CCL5/CCL17/CCL20/CCL22). We established a CCR4/CCR6 chemokine-based model that stratified ESCC patients with differential overall survival and responsiveness to neoadjuvant chemoradiotherapy combined with immunotherapy, which was validated in two independent cohorts of esophageal cancer with neoadjuvant treatment. CONCLUSIONS: This work reveals that neoadjuvant therapy significantly regulates the cellular composition of the tumor immune microenvironment in ESCC and proposes a potential model of CCR4/CCR6 system to predict the benefits from neoadjuvant chemoradiotherapy combined with immunotherapy.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Neoadjuvant Therapy/methods , Carcinoma, Squamous Cell/drug therapy , CD8-Positive T-Lymphocytes/pathology , Proteomics , Tumor Microenvironment
9.
Cell Metab ; 35(12): 2107-2118.e6, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37863051

ABSTRACT

Fructose consumption is associated with tumor growth and metastasis in mice, yet its impact on antitumor immune responses remains unclear. Here, we show that dietary fructose modulates adipocyte metabolism to enhance antitumor CD8+ T cell immune responses and control tumor growth. Transcriptional profiling of tumor-infiltrating CD8+ T cells reveals that dietary fructose mediates attenuated transition of CD8+ T cells to terminal exhaustion, leading to a superior antitumor efficacy. High-fructose feeding initiates adipocyte-derived leptin production in an mTORC1-dependent manner, thereby triggering leptin-boosted antitumor CD8+ T cell responses. Importantly, high plasma leptin levels are correlated with elevated plasma fructose concentrations and improved antitumor CD8+ T cell responses in patients with lung cancer. Our study characterizes a critical role for dietary fructose in shaping adipocyte metabolism to prime antitumor CD8+ T cell responses and highlights that the fructose-leptin axis may be harnessed for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Mice , Animals , Leptin/metabolism , Neoplasms/metabolism , Immunotherapy , Lymphocyte Activation
11.
Cell Metab ; 35(8): 1457-1473.e13, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37329887

ABSTRACT

Obesity, in which the functional importance of small nucleolar RNAs (snoRNAs) remains elusive, correlates with risk for many cancer types. Here, we identify that the serum copies of adipocyte-expressed SNORD46 correlate with body mass index (BMI), and serum SNORD46 antagonizes interleukin-15 (IL-15) signaling. Mechanically, SNORD46 binds IL-15 via G11, and G11A (a mutation that significantly enhances binding affinity) knockin drives obesity in mice. Functionally, SNORD46 blocks IL-15-induced, FER kinase-dependent phosphorylation of platelet glycoprotein 4 (CD36) and monoglyceride lipase (MGLL) in adipocytes, leading to inhibited lipolysis and browning. In natural killer (NK) cells, SNORD46 suppresses the IL-15-dependent autophagy, leading to reduced viability of obese NK. SNORD46 power inhibitors exhibit anti-obesity effects, concurring with improved viability of obese NK and anti-tumor immunity of CAR-NK cell therapy. Hence, our findings demonstrate the functional importance of snoRNAs in obesity and the utility of snoRNA power inhibitors for antagonizing obesity-associated immune resistance.


Subject(s)
Lipolysis , RNA, Small Nucleolar , Animals , Mice , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Interleukin-15/metabolism , Rejuvenation , Adipocytes/metabolism , Obesity/metabolism , Killer Cells, Natural
12.
Nat Aging ; 3(7): 813-828, 2023 07.
Article in English | MEDLINE | ID: mdl-37277640

ABSTRACT

Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.


Subject(s)
Liver Diseases , RNA, Long Noncoding , Animals , Mice , Aging/genetics , Homeostasis/genetics , Liver Diseases/metabolism , RNA, Long Noncoding/genetics , T-Lymphocytes, Regulatory
13.
Nat Commun ; 14(1): 2540, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137884

ABSTRACT

Circular RNAs (circRNAs) play important roles in the regulation of cancer. However, the clinical implications and regulatory networks of circRNAs in cancer patients receiving immune checkpoint blockades (ICB) have not been fully elucidated. Here, we characterize circRNA expression profiles in two independent cohorts of 157 ICB-treated advanced melanoma patients and reveal overall overexpression of circRNAs in ICB non-responders in both pre-treatment and early during therapy. Then, we construct circRNA-miRNA-mRNA regulatory networks to reveal circRNA-related signaling pathways in the context of ICB treatment. Further, we construct an ICB-related circRNA signature (ICBcircSig) score model based on progression-free survival-related circRNAs to predict immunotherapy efficacy. Mechanistically, the overexpression of ICBcircSig circTMTC3 and circFAM117B could increase PD-L1 expression via the miR-142-5p/PD-L1 axis, thus reducing T cell activity and leading to immune escape. Overall, our study characterizes circRNA profiles and regulatory networks in ICB-treated patients, and highlights the clinical utility of circRNAs as predictive biomarkers of immunotherapy.


Subject(s)
Melanoma , MicroRNAs , Humans , RNA, Circular/genetics , B7-H1 Antigen/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Melanoma/drug therapy , Melanoma/genetics , Immunotherapy
14.
Nucleic Acids Res ; 51(W1): W129-W133, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37078611

ABSTRACT

Driver mutations can contribute to the initial processes of cancer, and their identification is crucial for understanding tumorigenesis as well as for molecular drug discovery and development. Allostery regulates protein function away from the functional regions at an allosteric site. In addition to the known effects of mutations around functional sites, mutations at allosteric sites have been associated with protein structure, dynamics, and energy communication. As a result, identifying driver mutations at allosteric sites will be beneficial for deciphering the mechanisms of cancer and developing allosteric drugs. In this study, we provided a platform called DeepAlloDriver to predict driver mutations using a deep learning method that exhibited >93% accuracy and precision. Using this server, we found that a missense mutation in RRAS2 (Gln72 to Leu) might serve as an allosteric driver of tumorigenesis, revealing the mechanism of the mutation in knock-in mice and cancer patients. Overall, DeepAlloDriver would facilitate the elucidation of the mechanisms underlying cancer progression and help prioritize cancer therapeutic targets. The web server is freely available at: https://mdl.shsmu.edu.cn/DeepAlloDriver.


Subject(s)
Deep Learning , Neoplasms , Animals , Mice , Allosteric Regulation/genetics , Allosteric Site , Neoplasms/genetics , Proteins/chemistry , Carcinogenesis/genetics , Mutation
15.
Inflamm Bowel Dis ; 29(9): 1458-1469, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37080716

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), an idiopathic, chronic inflammatory disorder of the colonic mucosa, is commonly treated with antitumor necrosis factor α (anti-TNF-α) agents. However, only approximately two-thirds have an initial response to these therapies. METHODS: We integrated gene expression profiling from 3 independent data sets of 79 UC patients before they began anti-TNF-α therapy and calculated the differentially expressed genes between patient response and nonresponse to anti-TNF-α therapy and developed a de novo response-associated transcription signature score (logOR_Score) to demonstrate the predictive capability of anti-TNF-α therapy for therapeutic efficacy. Furthermore, we performed association analysis of the logOR_Score and clinical features, such as disease activity and immune microenvironment. RESULTS: A total of 2522 responsive and 1824 nonresponsive genes were identified from the integrated data set. Responsive genes were significantly enriched in metabolism-related pathways, whereas nonresponsive ones were associated with immune response-related pathways. The logOR_Score enabled the accurate prediction of the therapeutic efficacy of anti-TNF-α in 4 independent patient cohorts and outperformed the predictions made based on 6 transcriptome-based signatures. In terms of clinical features, the logOR_Score correlated highly with the activity of UC. From an immune microenvironment perspective, logOR_Scores of CD8+IL-17+ T cells, follicular B cells, and innate lymphoid cells significantly decreased in inflamed UC tissue. CONCLUSIONS: The de novo response-associated transcription signature may provide novel insights into the personalized treatment of patients with UC. Comprehensive analyses of the response-related subtypes and the association between logOR_Score and clinical features and immune microenvironment may provide insights into the underlying UC pathogenesis.


We developed a de novo response-associated transcription signature score (logOR_Score) to predict the response of patients with UC to anti-TNF-α agents prior to treatment and explored the different response mechanisms of UC.


Subject(s)
Colitis, Ulcerative , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Tumor Necrosis Factor Inhibitors/therapeutic use , RNA, Messenger/genetics , Immunity, Innate , Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Sci Immunol ; 8(81): eade1167, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36961908

ABSTRACT

Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.


Subject(s)
Genes, Immunoglobulin , INDEL Mutation , Animals , Mice , Mutation , DNA Repair/genetics , DNA/genetics
17.
Nat Commun ; 14(1): 1687, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973243

ABSTRACT

Dysfunction of cell cycle control and defects of primary ciliogenesis are two features of many cancers. Whether these events are interconnected and the driving mechanism coordinating them remains elusive. Here, we identify an actin filament branching surveillance system that alerts cells of actin branching insufficiency and regulates cell cycle progression, cytokinesis and primary ciliogenesis. We find that Oral-Facial-Digital syndrome 1 functions as a class II Nucleation promoting factor to promote Arp2/3 complex-mediated actin branching. Perturbation of actin branching promotes OFD1 degradation and inactivation via liquid-to-gel transition. Elimination of OFD1 or disruption of OFD1-Arp2/3 interaction drives proliferating, non-transformed cells into quiescence with ciliogenesis by an RB-dependent mechanism, while it leads oncogene-transformed/cancer cells to incomplete cytokinesis and irreversible mitotic catastrophe via actomyosin ring malformation. Inhibition of OFD1 leads to suppression of multiple cancer cell growth in mouse xenograft models. Thus, targeting OFD1-mediated actin filament branching surveillance system provides a direction for cancer therapy.


Subject(s)
Actins , Cytokinesis , Animals , Mice , Humans , Cytokinesis/physiology , Actins/metabolism , Actomyosin/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism
18.
Sci Adv ; 9(5): eadd6995, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36724291

ABSTRACT

One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.


Subject(s)
Carcinoma, Pancreatic Ductal , Kynurenine , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kynurenine/genetics , Kynurenine/metabolism , Pancreatic Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Microenvironment/genetics , Pancreatic Neoplasms
19.
Nat Commun ; 14(1): 933, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806082

ABSTRACT

Although advances in spatial transcriptomics (ST) enlarge to unveil spatial landscape of tissues, it remains challenging to delineate pathology-relevant and cellular localizations, and interactions exclusive to a spatial niche (e.g., tumor boundary). Here, we develop Cottrazm, integrating ST with hematoxylin and eosin histological image, and single-cell transcriptomics to delineate the tumor boundary connecting malignant and non-malignant cell spots in tumor tissues, deconvolute cell-type composition at spatial location, and reconstruct cell type-specific gene expression profiles at sub-spot level. We validate the performance of Cottrazm along the malignant-boundary-nonmalignant spatial axis. We identify specific macrophage and fibroblast subtypes localized around tumor boundary that interacted with tumor cells to generate a structural boundary, which limits T cell infiltration and promotes immune exclusion in tumor microenvironment. In this work, Cottrazm provides an integrated tool framework to dissect the tumor spatial microenvironment and facilitates the discovery of functional biological insights, thereby identifying therapeutic targets in oncologic ST datasets.


Subject(s)
Fibroblasts , Tumor Microenvironment , Eosine Yellowish-(YS) , Gene Expression Profiling , Hematoxylin
20.
J Hepatol ; 78(4): 770-782, 2023 04.
Article in English | MEDLINE | ID: mdl-36708811

ABSTRACT

BACKGROUND & AIMS: The tumour microenvironment (TME) is a crucial mediator of cancer progression and therapeutic outcome. The TME subtype correlates with patient response to immunotherapy in multiple cancers. Most previous studies have focused on the role of different cellular components in the TME associated with immunotherapy efficacy. However, the specific structure of the TME and its role in immunotherapy efficacy remain largely unknown. METHODS: We combined spatial transcriptomics with single-cell RNA-sequencing and multiplexed immunofluorescence to identify the specific spatial structures in the TME that determine the efficacy of immunotherapy in patients with hepatocellular carcinoma (HCC) receiving anti-PD-1 treatment. RESULTS: We identified a tumour immune barrier (TIB) structure, a spatial niche composed of SPP1+ macrophages and cancer-associated fibroblasts (CAFs) located near the tumour boundary, which is associated with the efficacy of immune checkpoint blockade. Furthermore, we dissected ligand‒receptor networks among malignant cells, SPP1+ macrophages, and CAFs; that is, the hypoxic microenvironment promotes SPP1 expression, and SPP1+ macrophages interact with CAFs to stimulate extracellular matrix remodelling and promote TIB structure formation, thereby limiting immune infiltration in the tumour core. Preclinically, the blockade of SPP1 or macrophage-specific deletion of Spp1 in mice led to enhanced efficacy of anti-PD-1 treatment in mouse liver cancer, accompanied by reduced CAF infiltration and increased cytotoxic T-cell infiltration. CONCLUSIONS: We identified that the TIB structure formed by the interaction of SPP1+ macrophages and CAFs is related to immunotherapy efficacy. Therefore, disruption of the TIB structure by blocking SPP1 may be considered a relevant therapeutic approach to enhance the therapeutic effect of immune checkpoint blockade in HCC. IMPACT AND IMPLICATIONS: Only a limited number of patients with hepatocellular carcinoma (HCC) benefit from tumour immunotherapy, which significantly hinders its application. Herein, we used multiomics to identify the spatial structure of the tumour immune barrier (TIB), which is formed by the interaction of SPP1+ macrophages and cancer-associated fibroblasts in the HCC microenvironment. This structure constrains immunotherapy efficacy by limiting immune cell infiltration into malignant regions. Preclinically, we revealed that blocking SPP1 or macrophage-specific deletion of Spp1 in mice could destroy the TIB structure and sensitize HCC cells to immunotherapy. These results provide the first key steps towards finding more effective therapies for HCC and have implications for physicians, scientists, and drug developers in the field of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Tumor Microenvironment , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...