Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Environ Manage ; 353: 120177, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38278113

ABSTRACT

To achieve the UN Sustainable Development Goals (SDGs) and the China Toilet Revolution on a global scale, it is crucial to implement a decentralized sanitation management system in developing countries. Fecal slags (FS) generated from septic tanks of toilets pose a challenge for remote villages. This study sought to resourcefully utilize FS through co-digesting with food waste (FW) under high-solid anaerobic co-digestion (HSAD). Besides, two metallic nanomaterials, nano-zerovalent iron (nZVI) and magnetite (Fe3O4), were employed to demonstrate the practical improvement of HSAD. The results showed that nZVI-dosed digesters produced the highest cumulative methane of 295.72 mL/gVS, 371.36 mL/gVS, 360.53 mL/gVS and 296.64 mL/gVS in 10%, 15%, 20% and 25% TS content, respectively, which was 1.15, 1.22, 1.16, 1.12 times higher than Fe3O4 dosed digesters. This increment could be ascribed to the simultaneous production of H2 from Fe2+ release from nZVI and the enrichment of homoacetogen. Changes in carbon degradation and methanogenic pathways, which facilitated stability under high TS contents, were observed. At low solid digestion (10% TS), Syntrophomonas cooperated with Methanosarcina and Methanobacterium to metabolize butyrate and propionate. However, due to the buildup of total ammonia nitrogen and volatile fatty acids, acetoclastic methanogens were inhibited in the high-solid digesters (15%, 20% and 25% TS). Consequently, a more resilient and highly tolerant Syntrophaceticus, alongside hydrogenotrophic methanogens such as Methanoculleus and Methanobrevibacter, maintained stability in the harsh environment.


Subject(s)
Nanostructures , Refuse Disposal , Anaerobiosis , Food Loss and Waste , Food , Sanitation , Bioreactors/microbiology , Iron , Methane , Sewage
2.
Environ Int ; 177: 108004, 2023 07.
Article in English | MEDLINE | ID: mdl-37295164

ABSTRACT

Dustbins function as critical infrastructures for urban sanitation, creating a distinct breeding ground for microbial assemblages. However, there is no information regarding the dynamics of microbial communities and the underlying mechanism for community assembly on dustbin surfaces. Here, surface samples were collected from three sampling zones (business building, commercial street and residential community) with different types (kitchen waste, harmful waste, recyclables, and others) and materials (metallic and plastic); and distribution pattern and assembly of microbial communities were investigated by high-throughput sequencing. Bacterial and fungal communities showed the distinct community variations across sampling zones and waste sorting. Core community and biomarker species were significantly correlated with the spatial distribution of overall community. The detection of pathogens highlighted the potential risk of surface microbiome. Human skin, human feces and soil biomes were the potential source environments of the surface microbiomes. Neutral model prediction suggested that microbial community assembly was significantly driven by stochastic processes. Co-association patterns varied with sampling zones and waste types, and neutral amplicon sequence variants (ASVs) that fall within the 95 % confidence intervals of neutral model were largely involved in the stability of microbial networks. These findings improve our understanding of the distribution pattern and the underlying assembly of microbial community on the dustbin surface, thus enabling prospective prediction and assessment of urban microbiomes and their impacts on human health.


Subject(s)
Microbiota , Refuse Disposal , Humans , Microbial Consortia , Prospective Studies , Soil , Stochastic Processes
3.
Huan Jing Ke Xue ; 43(11): 4971-4981, 2022 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-36437069

ABSTRACT

Lakes and reservoirs are important water resources for human survival and sustainable development. The seasonal excess of manganese ions (Mn2+) in drinking water in lakes and reservoirs has become an important factor threatening human life in health and social safety in production. Firstly, a batch study of NaOH-modified biochar was carried out. The effects of pyrolysis temperature (400, 500, and 600℃) and modification conditions (unmodified, pre-alkali modified, and post-alkali modified) on the adsorption performance of biochar were investigated. The results showed that the alkali pretreatment could improve the adsorption capacity of biochar, and the maximum adsorption capacity of the modified biochar obtained by alkali pretreatment at 400℃ was 41.06 mg·g-1. Additionally, the dynamic adsorption characteristics of Mn2+in the application on the fixed bed were investigated. The results showed that the stronger the adsorption capacity of biochar in the batch experiment, the longer its breakthrough point (ct/c0=0.1) and saturation point (ct/c0=0.9) in the dynamic adsorption process. In addition, when the initial concentration of Mn2+ and the influent flow rate were increased, the breakthrough point of the fixed bed was shortened from 360 min to 160 min and 200 min, respectively, and the saturation point was shortened from 865 min to 700 min and 600 min, respectively. The Thomas model could better fit the adsorption process of the fixed bed, indicating that the removal of Mn2+ by biochar was also dominated by chemical adsorption. This outcome can provide theoretical guidance for actual operations.


Subject(s)
Charcoal , Lakes , Humans , Adsorption , Alkalies
4.
Water Sci Technol ; 86(10): 2627-2641, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36450677

ABSTRACT

Digestive slurry normally contains various nutrient ions with high concentrations, including NH4+, PO43-, K+, Mg2+, Ca2+ and SO42-, which is a resource pool for nutrient recovery. In this study, a synchronously cationic and anionic selective electrodialysis (SCAE) was developed to recover anionic and cationic nutrient ions. Results showed that SCAE could synchronously recover more than 85.0%, 90.2% and 97.8% of PO43-, SO42- and other cations (including NH4+, K+, Ca2+, Mg2+) from the simulated digestive slurry, respectively. The ionic permeation sequence, NH4+ > K+ > Ca2+ > Mg2+ for cations, and SO42- > PO43- for anions, was affected by hydrated radius and hydration numbers, and did not alter despite the variation in electric field. High electrolyte concentration in the product streams would promote the recovery efficiency of both divalent cations and anions due to the ionic replacement effect and the demand for charge neutrality. Under continuous operation, the maximum concentrations of PO43-, SO42-, Mg2+, Ca2+, NH4+ and K+ in product streams reached 231.9, 496.6, 180.7, 604.3, 9,648.4 and 4,571.4 mg·L-1, respectively. By directly mixing different streams, the feasibility of producing mineral fertilizers without dosing externally precipitating chemicals was proved. Struvite, NH4HSO4 and potassium chloride minerals were produced successfully. The outcome provided an optional method for nutrient recovery from wastewater.


Subject(s)
Nutrients , Wastewater , Ions , Struvite , Electricity
5.
RSC Adv ; 12(24): 15222-15230, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35702442

ABSTRACT

The seasonal out-of-limit of manganese ions (Mn2+) in the drinking water reservoirs is an intractable problem to water supply, which can pose a threat to the human health. In this study, the removal of Mn2+ by using pristine (BC), pre-alkali (Pre-BC) and post-alkali (Post-BC) modified biochar originating from rice straw was investigated. The maximum adsorption capacities obtained for BC, Pre-BC, and Post-BC were 20.59, 28.37, and 8.06 mg g-1, respectively. The Langmuir isotherm model and the pseudo-second-order kinetic model were suitable fitting models to describe the adsorption process. The investigation of adsorption functions was carried out that revealed that the predominant forces were precipitation and cation exchange with the proportions of 43.38-69.15% and 38.05-55.79%, respectively. With regard to precipitation, Mn(ii) particles (Al-Si-O-Mn and MnCO3) and insignificantly oxidized insoluble Mn(iv) particles (MnO2) were formed on the biochar surface. Alkali and alkaline earth metals facilitated the behavior of cation exchange, where the primary contributing ions for cation exchange were Na+, Mg2+ and Ca2+ during the adsorption process. These outcomes suggest that alkali pre-treated modification of biochar is practical for the application of manganese pollution control in lakes and reservoirs.

6.
Environ Sci Pollut Res Int ; 29(44): 66578-66590, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35504990

ABSTRACT

Toilet revolution is driven by the urgent need for solutions to improve sanitation and access to high-quality organic fertilizer for rural areas, which is tagged "resource recovery from human waste." This study provides a possible solution via semi-solid anaerobic co-digestion (Aco-D) of source-separated fecal slag (SFS) and food waste (FW) (3:1). A comprehensive investigation of Aco-D at different inoculum/substrate ratios (ISR) was conducted. Results revealed that the reactor with ISR of 1:4 reached the highest methane yield (255.05 mL/gVS), which enhanced Methanosaetaceae, Methanomicrobiales, and Syntrophomonas. Additionally, the reactor with low feedstock (ISR of 1:2) showed higher removal efficiency of antibiotics (74.75%). The ecological risk of digestate decreased to an insignificant hazard quotient level, and the contents of nutrients and heavy metals were in line with the standard requirement for fertilizer. This study could serve as an alternative technology to support further research in SFS management and digestate utilization as fertilizer.


Subject(s)
Metals, Heavy , Refuse Disposal , Anaerobiosis , Anti-Bacterial Agents , Biofuels , Bioreactors , Digestion , Fertilizers , Food , Humans , Methane , Risk Assessment , Sewage/chemistry
7.
Water Res ; 215: 118253, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35278912

ABSTRACT

Struvite (MgNH4PO4·6H2O) crystallization is a promising method of phosphorus recovery from wastewater. As for digestive livestock wastewater, the extensive residues of antibiotics could induce struvite recovery to spread antibiotic resistance and thereafter pose ecological risks to the environment. In this study, struvite crystals with different morphologies were produced from synthetic swine wastewater, and tetracyclines (TCs) adsorbing capacities were investigated. The important factors, including the existence of Mg2+ ions and initial TCs concentration, were examined. The predominant adsorption between TCs and struvite crystals was electrostatic interaction, with the maximum capacity at doxycycline (DXC) 876.5 µg/Kg, oxytetracycline (OTC) 1946.7 µg/Kg and tetracycline (TC) 2376.2 µg/Kg, respectively. Well-faceted struvite crystallites possessed high adsorption capacities than those of dendritic crystallite, due to higher Mg intensities on the crystallite surface. The increment of phosphorus concentration could trigger the transformation of struvite morphology from needle to dendritic shapes with X-shape as an intermediate stage, which would reduce Mg density in specific crystallite facets and therefore limit TCs adsorption onto struvite crystals. The existence of Mg2+ ion would inhibit TCs deprotonation and thereafter improve TCs adsorption onto struvite crystals. Further investigation revealed that continuously elevating initial TCs concentration would promote the formation of 1:2 transferring to 1:1 TCs-Mg chelates, which would result in a fluctuation following a drastic augment of TCs adsorption capacity.


Subject(s)
Tetracyclines , Wastewater , Animals , Anti-Bacterial Agents , Crystallization/methods , Ions , Magnesium/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Struvite/chemistry , Swine , Tetracyclines/analysis , Wastewater/chemistry
8.
Water Res ; 206: 117756, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34678697

ABSTRACT

Struvite (MgNH4PO4·6H2O) recovered from livestock wastewater may impose a pharmacological threat to the environment, due to the extensive existence of antibiotics in the wastewater. In this study, tetracyclines (TCs) were selected as the typical antibiotics, and the individual processes of dissolved organic matters (DOM) evolution and their effects on TCs migration in struvite recovery from swine wastewater were discriminated and quantified. Results revealed that TCs transport was contributed by the adsorption of pure struvite crystals, struvite adsorbing DOM-TCs complex and DOM aggregation, which occupied 2.29-6.53%, 23.53-34.66%, and 59.09-74.19% of the total TCs migration amounts, respectively. A tangential flow filtration system was employed to divide DOM into five fractional parts on the basis of molecular weight cut-offs. Experimental results indicated that under alkaline conditions of struvite crystallization, DOMs with larger molecular weights, hydrolyzed to DOMs with smaller molecular weights, which consequently promoted TCs re-distribution in DOMs from higher molecular weights to those with lower molecular weights. Furthermore, a distribution model was developed to characterize TCs transport in struvite recovery by describing TCs distribution among various phases, including struvite adsorption, DOM-TCs complexing, DOM aggregation, and free state in the solution, respectively. These outcomes provided new understanding on DOM evolution and effects on antibiotics transport in phosphate recovery from wastewater.


Subject(s)
Tetracyclines , Wastewater , Animals , Anti-Bacterial Agents , Phosphorus , Struvite , Swine , Tetracyclines/analysis , Waste Disposal, Fluid , Wastewater/analysis
10.
Sci Total Environ ; 779: 146240, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-33744573

ABSTRACT

Biochar has gained great scientific attention as a promising agent for agricultural and environmental applications. A variety of biochars with excellent properties such as high porosity, surface area and functional groups have been developed for nutrients recovery from wastewater. Compared to pristine biochar, engineered biochar with enlarged surface area and abundant functional groups has been prepared which shows a new type of carbon-based material with enhanced adsorption potential for nutrients in wastewater. To date, a few reviews have been specifically focused on several important aspects of engineered biochar, such as its application to recover phosphate and ammonium from wastewater and subsequent use as a slow-release fertilizer. In this work, novel modification/treatment methods including activation with acid/alkali, functionalization with amides, thiols and oxidizing agents, metal salt impregnation, loading with various minerals and carbon-based materials are reviewed for preparing engineered biochar with improved adsorption capacity. Various sources of biomass for producing biochars were estimated, and the intrinsic characteristics and potential of biochar products for simultaneous recovery/removal of phosphate and ammonium from wastewater were evaluated. Relevant interaction mechanisms of phosphate and ammonium adsorption on engineered biochars have been discussed in details. Finally, important future prospects as well as industrial/commercial-scale application of engineered biochars for phosphate and ammonium recovery from wastewater have been emphasized. We believe that this review will provide broad scientific opportunities for thorough understanding of applying engineered biochar as a low-cost and environmentally sustainable material for nutrients recovery from wastewater.


Subject(s)
Ammonium Compounds , Wastewater , Adsorption , Charcoal , Phosphates
11.
Water Res ; 188: 116521, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33099265

ABSTRACT

Production of wood-based activated carbon (WAC) generates large volume of highly acidic and phosphate-rich wastewater. Currently, the routine treatment (i.e. lime precipitation) creates significant secondary pollution, leading to extra economic and environmental burdens. Here, by exploiting the strong acidity of WAC wastewater, we successfully demonstrate fluidized struvite crystallization as a low-cost treatment alternative. Based on a 12 m3/d on-site pilot-scale system, four different fluidized struvite crystallization scenarios are evaluated from technical, economic, and environmental perspectives. The results show that using MgO with MgCl2 supplement saves 42.8% of the reagent cost when treating phosphate-rich wastewater (i.e. P = 3125.2 mg/L), and also maintains ideal P removal rate and struvite product purity. Meanwhile, the internal circulation mode exhibits higher P recovery (99.2%) than the external mode (55.3%-89.3%), while also demonstrates superior economic and environmental benefit because of less chemical consumption. In addition, the struvite morphology can be turned between pellets with strong crushing strength (external mode) to powder (internal mode). By Life cycle cost (LCC) analysis, we find that, on a treatment scale of 500 m3/d, struvite-based technology saves up to 31.33 million Chinese Yuan (CYN) during a 20-year lifespan, with relative payback period of 2.60 year. The technical, economic, and environmental assessments confirm that the struvite technology is a promising alternative in solving the bottleneck of WAC wastewater treatment.


Subject(s)
Charcoal , Wastewater , Costs and Cost Analysis , Crystallization , Magnesium Compounds , Phosphates , Phosphorus , Struvite , Waste Disposal, Fluid
12.
Environ Pollut ; 266(Pt 2): 115361, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32810833

ABSTRACT

Struvite (MgNH4PO3·6H2O) crystallization is one of important methods of phosphorus recovery from wastewater. As to livestock wastewater, the high-strength occurrence of antibiotics and antibiotic resistance genes might induce struvite recovery to spread antibiotic resistance to the environment. However, limited information has been reported on the simultaneous transport of antibiotics and ARGs in struvite recovery. In the present study, tetracyclines (TCs) and tetracyclines antibiotic resistance genes (ARGs) were selected as the targeted pollutants, and their discrepant residues in struvite recovery from swine wastewater were investigated. TCs and ARGs were obviously detected, with their contents of 4.88-79.5 mg/kg and 6.99 × 107-2.14 × 1011 copies/g, notably higher than those of TCs 0.550-1.94 mg/kg and ARGs 3.98 × 104-5.66 × 107 copies/g obtained from synthetic wastewater. The correlational relationship revealed that predominant factors affecting TCs and ARGs transports were different. Results from network analyses indicated that among the total edges, the negative correlations between TCs and ARGs predominately occupied 18.0%. The redundancy analysis revealed that mineral components in the recovered products, including struvite, K-struvite and amorphous calcium phosphate, coupling with organic contents, displayed insignificant roles on TCs residues, where heavy metals exerted positive and remarkable functions to boost TCs migration. Unexpectedly, mineral components and heavy metals did not displayed significant promotion on ARGs transport as a whole.


Subject(s)
Phosphorus , Wastewater/analysis , Animals , Anti-Bacterial Agents/pharmacology , Crystallization , Drug Resistance, Microbial/drug effects , Genes, Bacterial/drug effects , Struvite , Swine
13.
Waste Manag ; 104: 51-59, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31962217

ABSTRACT

The generation of landfill leachate nanofiltration concentrate (LLNC) has been a dilemma for leachate treatment plants because it contains large amounts of refractory organics with low molecular weight (LMWO), as well as heavy metals (HMs), and is difficult to handle. The coagulation removal of LMWOs is a significant challenge, as is the removal of HMs bonded to LMWOs. In this study, coagulation through the dosing of FeCl3 was used to remove LMWOs and HMs from LLNC. The results interestingly demonstrated that the removal rates of dissolved organic carbon (DOC), Cr, Ni, and As reached up to 84.1% ± 3.9%, 91.0 ± 1.1%, 73.1 ± 2.2%, and 96.9 ± 1.5%, respectively. The partition of LMWO components, as well as the interactions among the LMWOs, HMs, and Fe(III) were investigated to determine the mechanism behind the LMWO and HM removal. LMWOs with a high degree of humification, including humic and fulvic acid-like components, were preferentially removed through aggregation and electrostatic attraction originating from the specialistic adsorption of Fe2(OH)24+ and Fe3(OH)45+. In addition to being removed, a portion of these two components was dissociated into aromatic protein I, aromatic protein II, and soluble microbial by-product-like materials due to an acid effect and the formation of inner-sphere complexes. A redundancy analysis revealed that As, Cr, and Ni are mainly removed through the electrostatic attraction of Fe(III), bonding to humic substances and hydrophilic organics, respectively. The outcomes provide a new understanding on the coagulation removal of LMWOs and HMs.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Ferric Compounds , Humic Substances , Molecular Weight
14.
Water Res ; 160: 424-434, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31163318

ABSTRACT

Different from current nutrient recovery technologies of recovering one or two nutrient components (PO43- or NH4+) from wastewater, this study aimed to fractionate various nutrient anions and cations simultaneously, including PO43-, SO42-, NH4+, K+, Mg2+ and Ca2+, into several streams. The recovered streams could be further paired together to produce high-value products. A novel electrodialysis process was developed by integrating monovalent selective anion and cation exchange membranes into an electrodialysis stack. Results revealed that nutrient recovery was achieved effectively by fractionating PO43- and SO42- into the anionic product stream, whereas bivalent cations (Mg2+ and Ca2+) were extracted in the cationic product stream and the monovalent cations (K+ and NH4+) were concentrated in the brine stream. For the permeation capabilities of anions, SO42- and Cl- possessed the higher preference, whereas PO43- permeated the membrane more difficult. As to the cations, the permeation sequence was: NH4+≈K+ >Ca2+>Mg2+≈Na+. Enhancing voltage values not only promoted ion migration rates, but also led to the increase of energy consumption. Although elevating initial phosphate concentration in the anionic product streams from 60 mg/L to 470 mg/L did not influence phosphate fractionation significantly, the current efficiency decreased from 3.55% to 0.65% and a remarkable increased of energy consumption from 29.42 kWh/kg NaH2PO4 to 160.13 kWh/kg NaH2PO4 was observed. Further experiments were conducted for phosphorus recovery by pairing two recovered product streams, which revealed that phosphate precipitation could be achieved by using inherent Ca2+ and Mg2+ in the wastewater without dosing external cation sources.


Subject(s)
Nutrients , Wastewater , Animals , Anions , Cations , Phosphorus , Swine
15.
Water Sci Technol ; 78(8): 1642-1651, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30500788

ABSTRACT

Struvite (MgNH4PO4·6H2O) crystallisation is a promising approach for phosphorus recovery from swine wastewater. Currently, intensive pig feeding has made heavy metals (HMs) extensive in swine wastewater; therefore, significant amounts of HMs have been detected in struvite recovery products. In this study, the HM residues in the struvite products recovered from stirred and fluidised bed reactors were investigated. The results showed that Zn, Mn, and Cu were the most abundant elements in swine wastewater (1,175.3 ± 178.0, 745.4 ± 51.5, and 209.3 ± 54.4 µg L-1, respectively). The HMs, especially Zn (97.0%) and Cu (96.8%), were mainly distributed in the total suspended solids (TSS) of the swine wastewater. Redundancy analysis revealed that the HMs in the struvite products harvested from the fluidised bed reactor were mainly attributable to the aggregation of dissolved matters, because most TSS were elutriated through fluidisation. In contrast, the HMs in the struvite products harvested from the stirred reactor mainly originated from the TSS, which complexed with the HMs, and co-precipitated and settled with the struvite products. Furthermore, chemical fractionation of the HM species confirmed that the presence of HMs in the struvite products was mainly attributable to metal precipitation and organic aggregation.


Subject(s)
Bioreactors , Metals, Heavy/analysis , Struvite/analysis , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/analysis , Animals , Phosphates , Phosphorus , Swine
16.
Chemosphere ; 210: 867-876, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30208546

ABSTRACT

As the consumption of global phosphorus reserves accelerates, recovering phosphorus as struvite (MgNH4PO4·6H2O) from wastewater is an important option for phosphorus recycling. However, magnesium source is one of the major limiting factors for struvite recovery. In this work, different from previous studies where seawater was used directly as magnesium source in struvite precipitation, an electrodialysis stack equipped with monovalent selective cation-exchange membranes was designed to fractionate Mg2+ from seawater for struvite recovery. Results revealed that Mg2+ fractionation was achieved effectively. The comparison on applying the driving force for ionic transport showed that constant voltage was more preferable than constant current due to its higher Mg2+ separation efficiency, current efficiency and lower energy consumption. Increasing voltage from 7 V to 13 V would improve Mg2+ permeation ratio from 72.9% to 80.5% into the product stream but simultaneously increased the energy consumption from 5.40 (kWh/kg MgCl2) to 11.69 (kWh/kg MgCl2). In addition, the investigation on the influence of Ca2+ co-existence and further struvite recovery experiments revealed that the variation of Ca2+ concentrations in seawater did not influence Mg2+ fractionation significantly, nevertheless it might reduce struvite recovery efficiency through forming calcium phosphate.


Subject(s)
Electrodiagnosis/methods , Ions/chemistry , Magnesium/chemistry , Seawater/chemistry , Struvite/chemistry
17.
J Environ Sci (China) ; 70: 144-153, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30037401

ABSTRACT

Struvite crystallization has been considered a promising approach to recover phosphorus from wastewater. However, its practical application is limited, probably because of the high cost of magnesium (Mg). In this study, a comprehensive economic analysis was conducted using five Mg sources (MgCl2, MgSO4, MgO, Mg(OH)2, and bittern) during the operation of a pilot-scale fluidized bed reactor (FBR), using swine wastewater as the case matrix. First, the economic operating conditions were investigated, and subsequently, the performance and the costs of the five Mg sources were compared. The results indicated that the FBR could be operated most economically at pH of 8.5 and Mg to phosphorus (Mg/P) molar ratio of 1.5. Under these conditions, no significant differences in phosphorus removal and product quality could be found between the five Mg sources. Selecting the most economical Mg source was thus highly dependent on the prices of the reagents and Mg sources. Low-solubility Mg sources were preferable when NaOH was priced higher, while high-solubility Mg sources proved more economical when HNO3 was expensive. The bittern was the most economical choice only when the distances for total inorganic orthophosphate removal and struvite recovery were shorter than 40 and 270km, respectively. The current study provides an overview of the economic selection of an Mg source, which can help reduce the cost of struvite crystallization.


Subject(s)
Crystallization/economics , Crystallization/methods , Magnesium/chemistry , Struvite/chemistry , Animals , Magnesium Compounds , Phosphates , Phosphorus , Solubility , Swine , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical
18.
J Environ Sci (China) ; 65: 144-152, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29548385

ABSTRACT

Tetracyclines (TCs) discharged from livestock wastewater have aroused public concerns due to their pharmacological threats to ecosystems and human health. As an important medium in the wastewater, suspended organic matters (SOMs) play vital roles in antibiotics transport and degradation. However, limited information has been reported in the relevant literature. This study investigated TCs sorption behavior on SOM, withdrawn from swine wastewater. High TCs sorption capacities were detected, with the maximum values ranging from 0.337 to 0.679mg/g. Increasing pH and temperature led to the decline of sorption capacity. Results from three-dimensional excitation-emission matrix fluorescence spectroscopy and Fourier transform infrared spectrometry revealed that amide and carboxyl groups were the main functional groups for TCs adsorption. The interactions between SOM and TCs were clarified as predominated by hydrogen-bonding and cation-exchange in acid conditions, and electrostatic repulsion in neutral or alkaline conditions. Adsorption kinetics modeling was conducted, and a satisfactory fitting was achieved with the Freundlich equation. These results indicated that the adsorption process was a rather complex process, involving a combination of cation-exchange and hydrogen-bonding. The results will provide a better understanding of the capability of SOM for TCs transport and abatement in the wastewater treatment process.


Subject(s)
Soil Pollutants/analysis , Tetracyclines/analysis , Water Pollutants, Chemical/analysis , Adsorption , Manure , Soil Pollutants/chemistry , Tetracyclines/chemistry , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/chemistry
19.
Water Res ; 134: 311-326, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29438892

ABSTRACT

Due to the extensive existence of tetracyclines (TCs), struvite (MgNH4PO4·6H2O) recovery from swine wastewater will pose TCs-pharmacological threats to the agricultural planting and environment. This study investigated the influences of dissolved organic matters (DOM), as an important medium in the wastewater, on TCs transport during struvite recovery from swine wastewater. Compared to TCs concentrations of 1.49-2.16 µg/g in the solids obtained from synthetic wastewater, the existence of DOM significantly enhanced TCs contents in the products with the values of 360-742 µg/g. DOM was fractionated into four size fractions with different molecular weight cut-off, i.e. FDOM1 (30 kDa-0.45 µm), FDOM2 (5-30 kDa), FDOM3 (1-5 kDa) and FDOM4 (<1 kDa). Results revealed that the destabilization and aggregation of FDOM1 and FDOM2 contributed major roles to TCs transport from the aqueous phase to the solid products. Meanwhile, the hydrolysis of certain parts of FDOM1 and FDOM2 led to the aqueous TCs re-partition among various DOM constituents, which presented a false appearance that FDOM4 with smaller molecular weight posed significant influences on TCs transport. Increasing pH values from 8.5 to 10.5 resulted with a stepwise increase of precipitated DOM, thereby enhancing TCs concentrations from 94.5 to 292.4 µg/g to 627.2-825.0 µg/g in the recovered solids. The outcomes provide a better understanding on the capability of DOM on TCs transport and abatement in the phosphate recovery process.


Subject(s)
Anti-Bacterial Agents/analysis , Struvite , Tetracyclines/analysis , Water Pollutants/analysis , Animals , Recycling , Swine , Waste Disposal, Fluid/methods , Wastewater/analysis
20.
Water Sci Technol ; 77(1-2): 159-166, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29339614

ABSTRACT

Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH4PO4·6H2O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.


Subject(s)
Struvite/analysis , Struvite/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Agriculture , Animals , Image Processing, Computer-Assisted , Microscopy, Electron, Scanning , Particle Size , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...