Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769050

ABSTRACT

The integration of oxidation and reduction half-reactions to amplify their synergy presents a considerable challenge in CO2 photoconversion. Addressing this challenge requires the construction of spatially adjacent redox sites while suppressing charge recombination at these sites. This study introduces an innovative approach that utilizes spatial synergy to enable synergistic redox reactions within atomic proximity and employs spin polarization to inhibit charge recombination. We incorporate Mn into Co3O4 as a catalyst, in which Mn sites tend to enrich holes as water activation sites, while adjacent Co sites preferentially capture electrons to activate CO2, forming a spatial synergy. The direct H transfer from H2O at Mn sites facilitates the formation of *COOH on adjacent Co sites with remarkably favorable thermodynamic energy. Notably, the incorporation of Mn induces spin polarization in the system, significantly suppressing the recombination of photogenerated charges at redox sites. This effect is further enhanced by applying an external magnetic field. By synergizing spatial synergy and spin polarization, Mn/Co3O4 exhibits a CH4 production rate of 23.4 µmol g-1 h-1 from CO2 photoreduction, showcasing a 28.8 times enhancement over Co3O4. This study first introduces spin polarization to address charge recombination issues at spatially adjacent redox sites, offering novel insights for synergistic redox photocatalytic systems.

2.
Article in English | MEDLINE | ID: mdl-38593088

ABSTRACT

Mimicking biological skin enabling direct, intelligent interaction between users and devices, multimodal sensing with optical/electrical (OE) output signals is urgently required. Owing to this, this work aims to logically design a stretchable OE biomimetic skin (OE skin), which can sensitively sense complex external stimuli of pressure, strain, temperature, and localization. The OE skin consists of elastic thin polymer-stabilized cholesteric liquid crystal films, an ion-conductive hydrogel layer, and an elastic protective membrane formed with thin polydimethylsiloxane. The as-designed OE skin exhibits customizable structural color on demand, good thermochromism, and excellent mechanochromism, with the ability to extend the full visible spectrum, a good linearity of over 0.99, fast response speed of 93 ms, and wide temperature range of 119 °C. In addition, the conduction resistance variation of ion-conductive hydrogel exhibits excellent sensing capabilities under pressure, stretch, and temperature, endowing a good linearity of 0.99998 (stretching from 0 to 150%) and high thermal sensitivity of 0.86% per °C. Such an outstanding OE skin provides design concepts for the development of multifunctional biomimetic skin used in human-machine interaction and can find wide applications in intelligent wearable devices and human-machine interactions.

3.
Langmuir ; 40(14): 7723-7732, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38554094

ABSTRACT

Liquid crystal emulsion is a new type of emulsion, in which the emulsifier molecules are located at the oil/water (O/W) interface and form a long-range ordered and short-range disordered lamellar liquid crystal. The lamellar liquid crystal formed by the emulsifier is similar to the skin stratum corneum lipid structure, which enables it to have a broad application prospect in the fields of cosmetics, pharmaceuticals, etc. In this work, a liquid crystal nanoemulsion was obtained by passing a liquid crystal emulsion stabilized by hydrogenated lecithin and phytosterol combination through a microfluidizer. The microstructure of the prepared liquid crystal nanoemulsion was investigated experimentally by dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering. The results have shown that the nanoemulsion inherited the liquid crystal emulsion property, namely, the long-range ordered and short-range disordered lamellar structure still existed at the oil/water interface even though they underwent extrusion, friction, and acceleration. At the same time, the underlying mechanisms of the existence of lamellar liquid crystal between the oil phase and the water phase for the nanoemulsion were explored theoretically by molecular dynamics simulations. The simulation results elucidated that the hydrogenated lecithin and phytosterol combination improved the flexibility of the bilayer structure composed of emulsifiers. The bilayers were the basic structure units of lamellar liquid crystals, and thus, the improved flexibility of bilayers provided insurance for the existence of lamellar liquid crystals with larger curvature around the oil droplets. In addition, the applicable properties of liquid crystal nanoemulsion were studied, and the results have shown that the liquid crystal nanoemulsion presented better slow-release and moisturizing properties than traditional nanoemulsions due to the existence of multilayers between oil and water phases. This work not only provides necessary information for the development and effective application of liquid crystal emulsions but also is helpful for in-depth understanding the inner properties of lamellar liquid crystal at molecular level.

4.
Small ; : e2310048, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279632

ABSTRACT

Liquid crystalline blue phase (BP) with 3D cubic nanostructure has attracted much interest in the fields of photonic crystals due to their unique optical properties and the ability to control the flow of light. However, there remains a challenge for simultaneously achieving self-assembly and mechanochromic response of soft 3D cubic nanostructures. Herein, a scalable strategy for the preparation of soft 3D cubic nanostructured films using oligomerization of the Michael addition reaction, which can induce the assembly of double-twisted cylinders for collective replication, remodeling, recombination, and growth, with a phase transition from BPII to BPI, and to chiral nematic phase, is presented. The prepared BP patterns can be obtained by Michael addition oligomerization reaction and composite mask photopolymerization, which present distinct mechanochromic sensitive due to patterns derived from different BP state, and the pattern can be reversibly erased and recurred by mechanical force and temperature. The average domain size of BPII prepared using this strategy can achieve 96 µm, which is 2.5 times larger than that obtained using the conventional cooling approach. This work provides new insights into the self-assembly and selective chemochromism of functional materials and devices.

5.
Electrophoresis ; 45(3-4): 333-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985935

ABSTRACT

The oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human high-density lipoproteins (HDLs) were investigated by low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS). To accelerate the optimization, native PAPC (n-PAPC) standard was first analyzed by a commercial CE instrument with a photodiode array detector. The optimal separation buffer contained 60% (v/v) acetonitrile, 40% (v/v) methanol, 20 mM ammonium acetate, 0.5% (v/v) formic acid, and 0.1% (v/v) water. The selected separation voltage and capillary temperature were 20 kV and 23°C. The optimal CE separation buffer was then used for the low-flow CE-MS analysis. The selected MS conditions contained heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). No sheath gas was used for MS. The linear range for n-PAPC was 2.5-100.0 µg/mL. The coefficient of determination (R2 ) was 0.9918. The concentration limit of detection was 1.52 µg/mL, and the concentration limit of quantitation was 4.60 µg/mL. The optimal low-flow CE-MS method showed good repeatability and sensitivity. The ox-PAPC products in human HDLs were determined based on the in vitro ox-PAPC products of n-PAPC standard. Twenty-one ox-PAPC products have been analyzed in human HDLs. Uremic patients showed significantly higher levels of 15 ox-PAPC products than healthy subjects.


Subject(s)
Lipoproteins, HDL , Phospholipids , Humans , Cells, Cultured , Mass Spectrometry , Electrophoresis, Capillary
6.
Langmuir ; 40(1): 594-603, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38115608

ABSTRACT

The application of alcohols as permeation enhancers in pharmaceutical and cosmetic formulations has attracted considerable attention, owing to their skin permeation-enhancing effect. Nonetheless, the elucidation of the fundamental mechanisms underlying the skin permeation-enhancing effect remains elusive. In this study, molecular dynamics (MD) simulations were employed to investigate the effect of 1,2-propanediol (1,2-PDO), 1,2-butanediol (1,2-BDO), and ethanol (EtOH) on the stratum corneum (SC) model membrane. The results showed that the effect of alcohols on the SC model membrane displayed a concentration-dependent nature. The alcohols can interact with SC lipids and exhibit a remarkable ability to selectively extract free fatty acid (FFA) molecules from the SC model membrane and make the SC looser. Meanwhile, 1,2-BDO and EtOH can penetrate into SC lipid bilayers at higher concentrations, leading to the formation of continuous hydrophilic defects in SC. The FFA extraction and the formation of continuous hydrophilic defects induced ceramide (CER) tail chains to become more disordered and fluid and also weakened the hydrogen bonding (H-bonding) network among SC lipids. Both the FFA extraction and the continuous hydrophilic defect formation endowed alcohols with the permeation-enhancing effect. The constrained simulations revealed that the free energy barriers decreased for the permeation of the hydrophilic model molecule (COL) across the SC model membranes containing alcohols, particularly for 1,2-BDO and EtOH. The possible permeation-enhancing mechanisms of alcohols were proposed correspondingly. This work not only provided a deep understanding of the transdermal permeation-enhancing behavior of alcohols at the molecular level but also provided necessary reference information for designing effective transdermal drug delivery systems in applications.


Subject(s)
Molecular Dynamics Simulation , Skin , Permeability , Administration, Cutaneous , Ethanol , Lipid Bilayers
7.
Medicina (Kaunas) ; 59(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37893483

ABSTRACT

Background and Objectives: This study aimed to investigate the diagnostic value of immunological biomarkers in children with asthmatic bronchitis and asthma and to develop a machine learning (ML) model for rapid differential diagnosis of these two diseases. Materials and Methods: Immunological biomarkers in peripheral blood were detected using flow cytometry and immunoturbidimetry. The importance of characteristic variables was ranked and screened using random forest and extra trees algorithms. Models were constructed and tested using the Scikit-learn ML library. K-fold cross-validation and Brier scores were used to evaluate and screen models. Results: Children with asthmatic bronchitis and asthma exhibit distinct degrees of immune dysregulation characterized by divergent patterns of humoral and cellular immune responses. CD8+ T cells and B cells were more dominant in differentiating the two diseases among many immunological biomarkers. Random forest showed a comprehensive high performance compared with other models in learning and training the dataset of immunological biomarkers. Conclusions: This study developed a prediction model for early differential diagnosis of asthmatic bronchitis and asthma using immunological biomarkers. Evaluation of the immune status of patients may provide additional clinical information for those children transforming from asthmatic bronchitis to asthma under recurrent attacks.


Subject(s)
Asthma , Bronchitis , Humans , Child , CD8-Positive T-Lymphocytes , Asthma/diagnosis , Bronchitis/complications , Bronchitis/diagnosis , Diagnosis, Differential , Biomarkers
8.
Clin Chim Acta ; 551: 117609, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37858712

ABSTRACT

OBJECTIVE: The aim of this study is to assess soluble ST2 (sST2) as a potential biomarker in pediatric systemic lupus erythematous patients (pSLEs), especially to reveal the association of the sST2 levels with the disease activity and other laboratory tests. METHODS: A total of 65 pSLEs and 33 age- and sex- matched healthy controls (HCs) were enrolled in this study between July and December 2022 from Children's Hospital of Fudan University. Serum levels of sST2 were determined and clinical information and laboratory test results were collected. RESULTS: Serum sST2 levels were significantly increased in pSLEs (36.7 ng/mL, IQR 16.6-76.9) compared with HCs (10.4 ng/mL, IQR 6.4-14.8). Patients with moderate to severe disease activities had significantly elevated levels of sST2 compared with those with inactive and mild disease activities. A positive correlation was found between sST2 levels and SLE Disease Activity Index-2000 (SLEDAI-2K) scores. The serum levels of sST2 also showed positive correlations with anti-dsDNA antibody, ALT, AST, GGT, blood urea, and negative correlations with C3, C4, CH50 and ALP. ROC analysis showed that sST2 could discriminate active disease (AUC: 0.959, 95 %CI 0.878-0.992) with an optimal cut-off of 30.2 ng/mL (sensitivity: 89.7 %, specificity: 100 %) and moderate/severe disease activities (AUC: 0.962, 95 %CI 0.883-0.994) with an optimal cut-off of 45.2 ng/mL (sensitivity: 91.7 %, specificity: 90.2 %). Decreased sST2 levels were observed after clinical treatment. CONCLUSIONS: Elevated serum sST2 level in pSLEs were observed and were highly associated with disease activity, suggesting sST2 might be a potential biomarker for pSLEs.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein , Lupus Erythematosus, Systemic , Humans , Child , Lupus Erythematosus, Systemic/diagnosis , Biomarkers , ROC Curve , Severity of Illness Index
9.
J Colloid Interface Sci ; 652(Pt B): 1693-1702, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37669591

ABSTRACT

Highly persistent and toxic organic pollutants increasingly accumulate in freshwater resources, exacerbating the human water scarcity crisis. Developing novel microrobots with high catalytic performance, high mobility, and recycling capability integrated to harness energy from the surrounding environment to degrade pollutants effectively remains a challenge. Here, we report a kind of Spirulina (SP)-based magnetic photocatalytic microrobots with a substantially decreased band gap than that of pure photocatalysts, facilitating the generation of stable holes and electrons. Under sunlight irradiation, the degradation rate of rhodamine B (RhB) by the microrobots could be increased by 7.85 times compared with that of pure BiOCl, indicating its excellent photocatalytic performance. In addition, the microrobots can swarm in a highly controllable manner to the targeted regions and perform selective catalytic degradation of organic pollutants in specific areas by coupling effect of light and magnetic field. Importantly, the catalytic capability of the swarming microrobots can be activated by light stimulus whereas inhibited by magneto-optical stimuli, with a rate constant 2.15 times lower than that of pure light stimulation. The biohybrid and magneto-optical responsive microrobots offer a potential platform for selective pollutants catalysis at assigned regions in wastewater treatment plants.

10.
Pract Lab Med ; 36: e00321, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37649538

ABSTRACT

Background: sST2 has emerged as a potential disease biomarker of cardiac and inflammatory diseases in pediatrics. This study aimed to evaluate the performance of the new Pylon sST2 assay and establish the reference intervals of sST2 in children and adolescence in China. Methods: The experiments on precision, linearity, effects of interferents and sample stability were carried out to evaluate the analytical performances. A total of 240 healthy participants, aged from 2 to 17 years were enrolled. The nonparametric method was used to calculate the age- and sex-specified reference intervals. sST2 levels were measured in children with different diseases to evaluate the assay's diagnostic performance. Results: The repeatability and within-laboratory imprecision CVs of the assay were 6.0% and 7.6% at 19.5 ng/ml, and 3.1% and 5.9% at 289.8 ng/ml, respectively. The method showed linearity between 2.5 and 918.5 ng/ml. It was also noteworthy that the sST2 level was not affected in the presence of hemoglobin (2 mg/ml), triglyceride (30 mg/ml), bilirubin (0.3 mg/ml) and cholesterol (5 mg/ml). sST2 was found stable for 5 days at 4 °C in serum sample. The reference interval was determined as 2.1-21.0 ng/ml in general. No significant variation was observed by sex. However, sST2 increased constantly with age, especially in male. Increased sST2 was found in patients of systemic lupus erythematosus, sepsis, Crohn's diseases, respiratory failure and post cardiac surgery. Conclusions: The Pylon sST2 assay showed good analytical performances. The reference intervals were established in children and adolescence and sST2 showed potential clinical values in several diseases in pediatrics.

12.
Chem Eng J ; 466: 143150, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37138814

ABSTRACT

Face masks with multiple functionalities and exceptional durability have attracted increasing interests during the COVID-19 pandemic. How to integrate the antibacterial property, comfortability during long-time wearing, and breath monitoring capability together on a face mask is still challenging. Here we developed a kind of face mask that assembles the particles-free water-repellent fabric, antibacterial fabric, and hidden breath monitoring device together, resulting in the highly breathable, water-repellent, and antibacterial face mask with breath monitoring capability. Based on the rational design of the functional layers, the mask shows exceptional repellency to micro-fogs generated during breathing while maintaining high air permeability and inhibiting the passage of bacteria-containing aerogel. More importantly, the multi-functional mask can also monitor the breath condition in a wireless and real-time fashion, and collect the breath information for epidemiological analysis. The resultant mask paves the way to develop multi-functional breath-monitoring masks that can aid the prevention of the secondary transmission of bacteria and viruses while preventing potential discomfort and face skin allergy during long-period wearing.

13.
Plant Physiol ; 192(3): 1997-2014, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37011145

ABSTRACT

Lignified stone cell content is a key factor used to evaluate fruit quality, influencing the economic value of pear (Pyrus pyrifolia) fruits. However, our understanding of the regulatory networks of stone cell formation is limited due to the complex secondary metabolic pathway. In this study, we used a combination of co-expression network analysis, gene expression profiles, and transcriptome analysis in different pear cultivars with varied stone cell content to identify a hub MYB gene, PbrMYB24. The relative expression of PbrMYB24 in fruit flesh was significantly correlated with the contents of stone cells, lignin, and cellulose. We then verified the function of PbrMYB24 in regulating lignin and cellulose formation via genetic transformation in homologous and heterologous systems. We constructed a high-efficiency verification system for lignin and cellulose biosynthesis genes in pear callus. PbrMYB24 transcriptionally activated multiple target genes involved in stone cell formation. On the one hand, PbrMYB24 activated the transcription of lignin and cellulose biosynthesis genes by binding to different cis-elements [AC-I (ACCTACC) element, AC-II (ACCAACC) element and MYB-binding sites (MBS)]. On the other hand, PbrMYB24 bound directly to the promoters of PbrMYB169 and NAC STONE CELL PROMOTING FACTOR (PbrNSC), activating the gene expression. Moreover, both PbrMYB169 and PbrNSC activated the promoter of PbrMYB24, enhancing gene expression. This study improves our understanding of lignin and cellulose synthesis regulation in pear fruits through identifying a regulator and establishing a regulatory network. This knowledge will be useful for reducing the stone cell content in pears via molecular breeding.


Subject(s)
Fruit , Pyrus , Fruit/genetics , Fruit/metabolism , Pyrus/genetics , Pyrus/metabolism , Lignin/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant
14.
Front Cell Infect Microbiol ; 13: 1139068, 2023.
Article in English | MEDLINE | ID: mdl-37026057

ABSTRACT

Objective: To investigate the epidemiology and infectious characteristics of Epstein-Barr virus (EBV) infection among children in Shanghai, China from 2017 to 2022. Methods: We conducted a retrospective analysis of 10,260 inpatient patients who were subjected EBV nucleic acid testing from July 2017 to December 2022. Demographic information, clinical diagnosis, laboratory findings, etc. were collected and analyzed. EBV nucleic acid testing were performed by real-time PCR. Results: A total of 2192 (21.4%) inpatient children were EBV-positive, with the average age of 7.3 ± 0.1 y. EBV detection was stable from 2017 to 2020 (26.9~30.1%), but showed essential decreases in 2021 (16.0%) and 2022 (9.0%). EBV was highest (>30%) detected from three quarters (Q) including 2018-Q4, 2019-Q4 and 2020-Q3. There were 24.5% of EBV coinfection with other pathogens, including bacteria (16.8%), other viruses (7.1%) and fungi (0.7%). EBV viral loads increased when coinfecting with bacteria ((142.2 ± 40.1) ×104/mL) or other viruses ((165.7 ± 37.4) ×104/mL). CRP significantly increased in EBV/fungi coinfection, while procalcitonin (PCT) and IL-6 showed remarkable increases in EBV/bacteria coinfection. Most (58.9%) of EBV-associated diseases belonged to immune disorders. The primary EBV-related diseases were systemic lupus erythematosus (SLE, 16.1%), immunodeficiency (12.4%), infectious mononucleosis (IM, 10.7%), pneumonia (10.4%) and Henoch-schonlein purpura (HSP, 10.2%). EBV viral loads were highest ((233.7 ± 27.4) × 104/mL) in patients with IM. Conclusion: EBV was prevalent among children in China, the viral loads increased when coinfecting with bacteria or other viruses. SLE, immunodeficiency and IM were the primary EBV-related diseases.


Subject(s)
Coinfection , Epstein-Barr Virus Infections , Lupus Erythematosus, Systemic , Humans , Child , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human/genetics , Retrospective Studies , Coinfection/epidemiology , Coinfection/complications , China/epidemiology , Lupus Erythematosus, Systemic/complications
15.
Colloids Surf B Biointerfaces ; 224: 113211, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863250

ABSTRACT

Nanoplastics (NPs) are mainly generated from the decomposition of plastic waste and industrial production, which have attracted much attention due to the potential risk for humans. The ability of NPs to penetrate different biological barriers has been proved, but the understanding of molecular details is very limited, especially for organic pollutant-NP combinations. Here, we investigated the uptake process of polystyrene NPs (PSNPs) combined with benzo(a)pyrene (BAP) molecules by dipalmitoylphosphatidylcholine (DPPC) bilayers by molecular dynamics (MD) simulations. The results showed that the PSNPs can adsorb and accumulate BAP molecules in water phase and then carried BAP molecules to enter DPPC bilayers. At the same time, the adsorbed BAP promoted the penetration of PSNPs into DPPC bilayers effectively by hydrophobic effect. The process of BAP-PSNP combinations penetrating into DPPC bilayers can be summarized into four steps including adhesion on the DPPC bilayer surface, uptake by the DPPC bilayer, BAP molecules detached from the PSNPs, and the PSNPs depolymerized in the bilayer interior. Furthermore, the amount of adsorbed BAP on PSNPs affected the properties of DPPC bilayers directly, especially the fluidity of DPPC bilayers that determine the physiologic function. Obviously, the combined effect of PSNPs and BAP enhanced the cytotoxicity. This work not only presented a vivid transmembrane process of BAP-PSNP combinations and revealed the nature of the effects of adsorbed benzo(a)pyrene on the dynamic behavior of polystyrene nanoplastics through phospholipid membrane, but also provide some necessary information of the potential damage for organic pollutant-nanoplastic combinations on human health at a molecular level.


Subject(s)
Environmental Pollutants , Phospholipids , Humans , Benzo(a)pyrene/chemistry , Microplastics , Polystyrenes , Molecular Dynamics Simulation , 1,2-Dipalmitoylphosphatidylcholine/chemistry
16.
J Colloid Interface Sci ; 638: 778-787, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36791476

ABSTRACT

Nanoplastics are mainly generated from the decomposition of plastic waste and artificial production and have attracted much attention due to their wide distribution in the environment and the potential risk for humans. As the largest organ of the human body, the skin is inevitably in contact with nanoplastics. Stratum corneum is the first barrier when the skin is exposed to nanoplastics. However, little is known about the interactions between nanoplastics and stratum corneum. Here, the effects of particle size and surface functionalization (amino-modified and carboxy-modified) of polystyrene nanoplastics on the stratum corneum models were studied by Langmuir monolayer and molecular dynamics simulations. An equimolar mixture of ceramide/cholesterol/free fatty acid was used to mimic stratum corneum intercellular lipids. The Langmuir monolayer studies demonstrated that the larger size and surface functionalization of polystyrene nanoplastics significantly reduced the stability of stratum corneum lipid monolayer in a concentration-dependent fashion. Simulation results elucidated that functionalized polystyrene oligomers had a stronger interaction with lipid components of the stratum corneum model membrane. The cell experiments also indicated that functionalized polystyrene nanoplastics, especially for amino-modified polystyrene nanoplastics, had significant cytotoxicity on normal human dermal fibroblast cells. Our results provide fundamental information and the basis for a deeper understanding of the health risks of nanoplastics to humans.


Subject(s)
Microplastics , Polystyrenes , Humans , Epidermis , Skin , Fatty Acids, Nonesterified
17.
RSC Adv ; 12(53): 34601-34613, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545609

ABSTRACT

Stimuli-responsive smart supramolecular self-assembly with controllable morphology and adjustable rheological property has attracted widespread concern of scientists in recent years due to the great potential application in microfluidics, controlled release, biosensors and so on. In this study, a pH and UV light dual stimuli-responsive system was constructed by combining Gemini surfactant 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecyl ammonium bromide) (12-3(OH)-12·2Br-) with trans-ortho-hydroxyl cinnamic acid (trans-OHCA) in aqueous solution. The phase behavior and stimuli-responsive behavior of the system including the microstructural transition, rheological property, intermolecular interaction, and isomerization reaction were explored by various experiment techniques such as rheometer, UV-vis spectrum, polarized optical microscopy (POM), transmission electron microscopy (TEM), dynamic light scattering (DLS) as well as theoretical calculation. The system displays abundant phase behaviors that supramolecular self-assemblies of different morphologies in different states such as spherical micelle, wormlike micelle, lamellar liquid crystal, and aqueous two phase system (ATPS) were observed even at lower concentration, which provide the research basis on the abundant stimuli-responsiveness of the system. The results prove that the multiple ionization and the photo-isomerization of trans-OHCA endow the system with plentiful responses to pH and UV light stimuli. It is expected that this study on the dual stimuli-responsive system with abundant self-assembly behaviors and adjustable rheological behaviors would be of theoretical and practical importance, which would provide essential guidance in designing and constructing smart materials with multiple stimuli-responses.

18.
Hortic Res ; 9: uhac148, 2022.
Article in English | MEDLINE | ID: mdl-36072833

ABSTRACT

CRISPR/Cas systems have been widely used for genome engineering in many plant species. However, their potentials have remained largely untapped in fruit crops, particularly in pear, due to the high levels of genomic heterozygosity and difficulties in tissue culture and stable transformation. To date, only a few reports on the application of the CRISPR/Cas9 system in pear have been documented, and have shown very low editing efficiency. Here we report a highly efficient CRISPR toolbox for loss-of-function and gain-of-function research in pear. We compared four different CRISPR/Cas9 expression systems for loss-of-function analysis and identified a potent system that showed nearly 100% editing efficiency for multi-site mutagenesis. To expand the targeting scope, we further tested different CRISPR/Cas12a and Cas12b systems in pear for the first time, albeit with low editing efficiency. In addition, we established a CRISPR activation (CRISPRa) system for multiplexed gene activation in pear calli for gain-of-function analysis. Furthermore, we successfully engineered the anthocyanin and lignin biosynthesis pathways using both CRISPR/Cas9 and CRISPRa systems in pear calli. Taking these results together, we have built a highly efficient CRISPR toolbox for genome editing and gene regulation, paving the way for functional genomics studies as well as molecular breeding in pear.

19.
Nanomaterials (Basel) ; 12(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36014657

ABSTRACT

Developing clean and renewable ocean wave energy is a top priority and an effective way to achieve carbon neutrality. Triboelectric nanogenerators (TENGs) have emerged as promising green and clean energy-harvesting devices. To harvest low-frequency wave energy efficiently, much effort has been made on the modification of the contact surface, which leads to a higher fabrication cost. In this work, we designed a novel "Lucky-Bag" core (LBC) for spherical TENGs with a low-cost and easy fabricating process. The nanofiber/silicone hybrid porous outer layer of the LBC can switch freely from plane to surface and improve the output performance of both the plane and spherical TENGs. Several factors, such as the input frequency, direction, and resistive load, together with the thickness were systematically investigated; the unique porous soft-contact structure increased the triboelectric contact area, and the working mechanism was studied by using the COMSOL software. The experimental results showed that the peak-to-peak open-circuit voltage (Voc) and short-circuit current (Isc) could reach 580 V and 23.5 µA at 1.5 Hz, even under 2D linear motion. Besides, the maximum output power of the spherical TENGs reached 9.10 mW, which can fully power electronic devices such as capacitors and LEDs under water wave triggering. These findings provide useful guidance for optimizing the performance of spherical TENGs for practical applications in harvesting water wave energy.

20.
Angew Chem Int Ed Engl ; 61(26): e202204605, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35442566

ABSTRACT

The design of artificial ion channels with high activity, selectivity and gating function is challenging. Herein, we designed the light-driven motor molecule MC2, which provides new design criteria to overcome these challenges. MC2 forms a selective K+ channel through a single molecular transmembrane mechanism, and the light-driven rotary motion significantly accelerates ion transport, which endows the irradiated motor molecule with excellent cytotoxicity and cancer cell selectivity. Mechanistic studies reveal that the rotary motion of MC2 promotes K+ efflux, generates reactive oxygen species and eventually activates caspase-3-dependent apoptosis in cancer cells. Combined with the spatiotemporally controllable advantages of light, we believe this strategy can be exploited in the structural design and application of next-generation synthetic cation transporters for the treatment of cancer and other diseases.


Subject(s)
Apoptosis , Neoplasms , Ion Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...