Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Mol Neurobiol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418757

ABSTRACT

Stroke stands as the second leading cause of death globally, surpassed only by ischemic heart disease. It accounts for 9% of total worldwide deaths. Given the swiftly evolving landscape, medical professionals and researchers are devoting increased attention to identifying more effective and safer treatments. Recent years have witnessed a focus on exosomes derived from mesenchymal stem cells cultivated under hypoxic conditions, referred to as Hypo-Exo. These specialized exosomes contain an abundance of components that facilitate the restoration of ischemic tissue, surpassing the content found in normal exosomes. Despite advancements, the precise role of Hypo-Exo in cases of cerebral ischemia remains enigmatic. Therefore, this study was designed to shed light on the potential efficacy of Hypo-Exo in stroke treatment. Our investigations unveiled promising outcomes, as the administration of Hypo-Exo led to improved behavioral deficits and reduced infarct areas in mice affected by ischemic conditions. Notably, these positive effects were hindered when Hypo-Exo loaded with anti-miR-214-3p were introduced, implying that the neuroprotective attributes of Hypo-Exo are reliant on miR-214-3p. This conclusion was substantiated by the high levels of miR-214-3p detected within Hypo-Exo. Furthermore, our examination of the ischemic penumbra zone revealed a gradual and sustained escalation in PTEN expression, a phenomenon effectively countered by Hypo-Exo treatment. Collectively, our findings suggest the existence of a regulatory pathway centered on miR-214-3p within Hypo-Exo. This pathway exerts a downregulating influence on the PTEN/Akt signaling pathway, thereby contributing to the amelioration of neurological function subsequent to ischemia-reperfusion events.

3.
World Neurosurg ; 183: e963-e970, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266990

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the surgical effectiveness of posterior procedure with long segment stabilization for treating thoracolumbar pseudarthrosis associated with ankylosing spinal disorders (ASDs) without anterior fusion or osteotomy. METHODS: Twelve patients with thoracolumbar pseudarthrosis in ASD were enrolled. All patients underwent posterior long-segment stabilization procedures. In some patients, the percutaneous technique or the aid of a robot or O-arm navigation was utilized for pedicle screw implantation. The clinical results were evaluated by means of the visual analog scale and Oswestry Disability Index. Radiological outcomes were evaluated for bone fusion, anterior column defect, local kyphotic correction, and position of the pedicle screws. RESULTS: All patients experienced effective bone fusion at the sites of pseudarthrosis. The mean operative time was 161.7 ± 57.1 minutes, and the average amount of blood loss was 305.8 ± 293.2 mL. For 6 patients who underwent surgery with the assistance of a robot or O-arm navigation, there was no statistically significant difference observed in terms of operative time and mean blood loss compared to those who used the freehand technique (P > 0.05). The visual analog scale score, Oswestry Disability Index value, and mean local kyphotic angle showed significant improvements at the final follow-up (P < 0.05). The accuracy of pedicle screw placement was 96%. CONCLUSIONS: Posterior surgery with long-segment fixation, without anterior fusion or osteotomy, can achieve satisfactory outcomes in ASD patients with thoracolumbar pseudarthrosis. The application of percutaneous techniques, as well as the assistance of robots or navigation technique may be a good choice for the treatment of pseudarthrosis in ASD patients.


Subject(s)
Kyphosis , Pedicle Screws , Pseudarthrosis , Spinal Fractures , Spinal Fusion , Surgery, Computer-Assisted , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Lumbar Vertebrae/injuries , Pseudarthrosis/diagnostic imaging , Pseudarthrosis/surgery , Imaging, Three-Dimensional , Tomography, X-Ray Computed , Kyphosis/diagnostic imaging , Kyphosis/etiology , Kyphosis/surgery , Treatment Outcome , Spinal Fusion/methods , Retrospective Studies , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Spinal Fractures/surgery
4.
Opt Lett ; 49(2): 274-277, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194546

ABSTRACT

X ray ghost imaging (XGI) offers both radiation dose-reduction potential and cost-effective benefits owing to the utilization of a single-pixel detector. Most XGI schemes with laboratory x ray sources require a mechanically moving mask for either structured illumination or structured detection. In either configuration, however, its resolution remains limited by the source size and the unit size of the mask. Upon propagation, the details of the object can actually be magnified by the divergence of x rays, but at the same time, the penumbra effect produced by the finite source size is dramatically intensified, which ultimately leads to a degradation of image quality in XGI. To address these limitations, this work proposes a magnified XGI scheme using structured detection equipped with tapered polycapillary optics, which can efficiently suppress the object's penumbra as well as resolve the magnified details of the object. In general, the resolution of this scheme is no longer affected by the source size but by the microcapillary size of polycapillary. Our work fundamentally achieves cancellation of penumbra effect-induced aberration, thus paving the way for high-resolution magnified XGI.

6.
Opt Lett ; 48(7): 1618-1621, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221724

ABSTRACT

Since the paradigm shift in 2009 from pseudo-thermal ghost imaging (GI) to computational GI using a spatial light modulator, computational GI has enabled image formation via a single-pixel detector and thus has a cost-effective advantage in some unconventional wave bands. In this Letter, we propose an analogical paradigm known as computational holographic ghost diffraction (CH-GD) to shift ghost diffraction (GD) from classical to computational by using self-interferometer-assisted measurement of field correlation functions rather than intensity correlation functions. More than simply "seeing" the diffraction pattern of an unknown complex volume object with single-point detectors, CH-GD can retrieve the diffracted light field's complex amplitude and can thus digitally refocus to any depth in the optical link. Moreover, CH-GD has the potential to obtain the multimodal information including intensity, phase, depth, polarization, and/or color in a more compact and lensless manner.

7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(5): 547-551, 2023 May 10.
Article in Chinese | MEDLINE | ID: mdl-37102287

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic etiology of a consanguineous Chinese pedigree affected with Congenital coagulation factor XII (XII) deficiency. METHODS: Members of the pedigree who had visited Ruian People's Hospital on July 12, 2021 were selected as the study subjects. Clinical data of the pedigree were reviewed. Peripheral venous blood samples were taken from the subjects. Blood coagulation index and genetic testing were carried out. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: This pedigree has comprised 6 individuals from 3 generations, including the proband, his father, mother, wife, sister and son. The proband was a 51-year-old male with kidney stones. Blood coagulation test showed that his activated partial thromboplastin time (APTT) was significantly prolonged, whilst the FXII activity (FXII:C) and FXII antigen (FXII:Ag) were extremely reduced. The FXII:C and FXII:Ag of proband's father, mother, sister and son have all reduced to about half of the lower limit of reference range. Genetic testing revealed that the proband has harbored homozygous missense variant of c.1A>G (p.Arg2Tyr) of the start codon in exon 1 of the F12 gene. Sanger sequencing confirmed that his father, mother, sister and son were all heterozygous for the variant, whilst his wife was of the wild type. By bioinformatic analysis, the variant has not been included in the HGMD database. Prediction with SIFT online software suggested the variant is harmful. Simulation with Swiss-Pbd Viewer v4.0.1 software suggested that the variant has a great impact on the structure of FXII protein. Based on the Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic. CONCLUSION: The c.1A>G (p.Arg2Tyr) variant of the F12 gene probably underlay the Congenital FXII deficiency in this pedigree. Above finding has further expanded the spectrum of F12 gene variants and provided a reference for clinical diagnosis and genetic counseling for this pedigree.


Subject(s)
Factor XII Deficiency , Factor XII , Male , Female , Humans , Middle Aged , Factor XII/genetics , Pedigree , Codon, Initiator , East Asian People , Mothers , Factor XII Deficiency/genetics , Mutation
8.
Materials (Basel) ; 16(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902896

ABSTRACT

The shrinkage of core concrete during construction is the key reason for the separation of steel pipes and core concrete. Utilizing expansive agents during cement hydration is one of the main techniques to prevent voids between steel pipes and core concrete and increase the structural stability of concrete-filled steel tubes. The expansion and hydration properties of CaO, MgO, and CaO + MgO composite expansive agents in C60 concrete under variable temperature conditions were investigated. The effects of the calcium-magnesium ratio and magnesium oxide activity on deformation are the main parameters to consider when designing composite expansive agents. The results showed that the expansion effect of CaO expansive agents was predominant in the heating stage (from 20.0 °C to 72.0 °C at 3 °C/h), while there was no expansion in the cooling stage (from 72.0 °C to 30.0 °C at 3 °C/d, and then to 20.0 °C at 0.7 °C/h); the expansion deformation in the cooling stage was mainly caused by the MgO expansive agent. With the increase in the active reaction time of MgO, the hydration of MgO in the heating stage of concrete decreased, and the expansion of MgO in the cooling stage increased. During the cooling stage, 120 s MgO and 220 s MgO resulted in continuous expansion, and the expansion curve did not converge, while 65 s MgO reacted with water to form brucite in large amounts, leading to its lower expansion deformation during the later cooling process. In summary, the CaO and 220 s MgO composite expansive agent in the appropriate dosage is suitable for compensating for the shrinkage of concrete in the case of a fast high-temperature rise and slow cooling rate. This work will guide the application of different types of CaO-MgO composite expansive agents in concrete-filled steel tube structures under harsh environmental conditions.

9.
Mol Brain ; 16(1): 22, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774489

ABSTRACT

Melanoma-associated antigen D1 (Maged1) has critical functions in the central nervous system in both developmental and adult stages. Loss of Maged1 in mice has been linked to depression, cognitive disorder, and drug addiction. However, the role of Maged1 in Parkinson's disease (PD) remains unclear. In this study, we observed that Maged1 was expressed in the dopaminergic (DA) neurons of the substantia nigra in mice and humans, which could be upregulated by the in vivo or in vitro treatment with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-Methyl-4-phenylpyridinium iodide (MPP+). Genetic ablation of Maged1 in mice attenuated motor deficits, the loss of DA neurons, and disease progression induced by MPTP. Moreover, Maged1 deficiency protected DA neurons against MPP+-induced toxicity in primary cultured cells. Mechanistically, loss of Maged1 upregulated the Akt signaling pathway and downregulated the mTOR signaling pathway in SH-SY5Y cells, which may in turn attenuate the cell apoptosis and impairment of autophagy. Consistent with it, the degeneration of midbrain and striatum among elderly Maged1 knockout mice was relatively mild compared to those in wild-type mice under physiological conditions. Taken together, this study suggested that Maged1 deficiency inhibited apoptosis and enhanced autophagy, which may provide a new potential target for the therapy of PD.


Subject(s)
Neoplasm Proteins , Parkinson Disease , Animals , Humans , Mice , 1-Methyl-4-phenylpyridinium , Disease Models, Animal , Disease Progression , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Parkinson Disease/genetics , Signal Transduction
10.
Opt Express ; 30(15): 26728-26741, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236859

ABSTRACT

The multiplexing and de-multiplexing of orbital angular momentum (OAM) beams are critical issues in optical communication. Optical diffractive neural networks have been introduced to perform sorting, generation, multiplexing, and de-multiplexing of OAM beams. However, conventional diffractive neural networks cannot handle OAM modes with a varying spatial distribution of polarization directions. Herein, we propose a polarized optical deep diffractive neural network that is designed based on the concept of dielectric rectangular micro-structure meta-material. Our proposed polarized optical diffractive neural network is optimized to sort, generate, multiplex, and de-multiplex polarized OAM beams. The simulation results show that our network framework can successfully sort 14 kinds of orthogonally polarized vortex beams and de-multiplex the hybrid OAM beams into Gauss beams at two, three, and four spatial positions, respectively. Six polarized OAM beams with identical total intensity and eight cylinder vector beams with different topology charges have also been sorted effectively. Additionally, results reveal that the network can generate hybrid OAM beams with high quality and multiplex two polarized linear beams into eight kinds of cylinder vector beams.

11.
Opt Express ; 30(12): 21866-21875, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224898

ABSTRACT

The principle of computational ghost imaging (GI) offers a potential application in optical encryption. Nevertheless, large numbers of keys composed of random or specific patterns set an obstacle to its application. Here, we propose a series of pattern compression methods based on computational GI, in which thousands of patterns are replaced by a single standard image (i.e., two-dimensional data), a sequence of numbers (i.e., one-dimensional data) or the fractional part of an irrational number (i.e., zero-dimensional data). Different pattern compression methods are tested in both simulations and experiments, and their error tolerances in encryption are further discussed. Our proposed methods can greatly reduce the pattern amount and enhance encryption security, which pushes forward the application of computational GI, especially in optical encryption.

12.
Appl Opt ; 60(32): 10151-10159, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34807122

ABSTRACT

Quantum-illumination-inspired single-pixel imaging (QII-SPI) or computational ghost imaging protocol is proposed to improve image quality in the presence of strong background and stray light. According to the reversibility of the optical path, a digital micro-mirror device acts as a structured light modulator and a spatial light filter simultaneously, which can effectively eliminate 50% of stray light. Accompanied by a 6 dB gain of detection signal-to-noise ratio under an equivalent loss condition, our scheme only requires a simple and minor modification on the placement of the single-pixel detector based on the original SPI system. Since QII-SPI will obtain almost the same reconstruction results as the passive SPI technology in principle, one can, therefore, adjust the placement position of the detector, without exchanging the relative position of the detector and the light source to realize the flexible conversion of the SPI system from active to passive. Also, this work initially discusses the influence of relative coherence time on Hadamard-based SPI driven by a thermal source. This work brings new insights into the optical path design of the SPI technology, paving the way for the practical application of active SPI in stray light environments.

13.
Opt Lett ; 46(21): 5389-5392, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34724483

ABSTRACT

Computational ghost imaging or single-pixel imaging enables the image formation of an unknown scene using a lens-free photodetector. In this Letter, we present a computational panoramic ghost imaging system that can achieve a full-color panorama using a single-pixel photodetector, where a convex mirror performs the optical transformation of the engineered Hadamard-based circular illumination pattern from unidirectionally to omnidirectionally. To our best knowledge, it is the first time to propose the concept of ghost panoramas and realize preliminary experimentations. It is foreseeable that ghost panoramas will have more advantages in imaging and detection in many extreme conditions (e.g., scattering/turbulence and unconventional spectra), as well as broad application prospects.

14.
Sci Adv ; 7(21)2021 May.
Article in English | MEDLINE | ID: mdl-34020956

ABSTRACT

Optical metasurfaces can offer high-quality multichannel displays by modulating different degrees of freedom of light, demonstrating great potential in the next generation of optical encryption and anti-counterfeiting. Different from the direct imaging modality of metasurfaces, single-pixel imaging (SPI) as a typical computational imaging technique obtains the object image from a decryption-like computational process. Here, we propose an optical encryption scheme by introducing metasurface-images (meta-images) into the encoding and decoding processes as the keys of SPI encryption. Different high-quality meta-images generated by a dual-channel Malus metasurface play the role of keys to encode multiple target images and retrieve them following the principle of SPI. Our work eliminates the conventional digital transmission process of keys in SPI encryption, enables the reusability of a single metasurface in different encryption processes, and thereby paves the way toward a high-security optical encryption between direct and indirect imaging methods.

15.
Micromachines (Basel) ; 12(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671142

ABSTRACT

With the rapidly development of mobile cloud computing (MCC), the Internet of Things (IoT), and artificial intelligence (AI), user equipment (UEs) are facing explosive growth. In order to effectively solve the problem that UEs may face with insufficient capacity when dealing with computationally intensive and delay sensitive applications, we take Mobile Edge Computing (MEC) of the IoT as the starting point and study the computation offloading strategy of UEs. First, we model the application generated by UEs as a directed acyclic graph (DAG) to achieve fine-grained task offloading scheduling, which makes the parallel processing of tasks possible and speeds up the execution efficiency. Then, we propose a multi-population cooperative elite algorithm (MCE-GA) based on the standard genetic algorithm, which can solve the offloading problem for tasks with dependency in MEC to minimize the execution delay and energy consumption of applications. Experimental results show that MCE-GA has better performance compared to the baseline algorithms. To be specific, the overhead reduction by MCE-GA can be up to 72.4%, 38.6%, and 19.3%, respectively, which proves the effectiveness and reliability of MCE-GA.

16.
Appl Opt ; 60(5): 1092-1098, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33690556

ABSTRACT

The ghost imaging (GI) approach is an intriguing and promising image acquisition technique that can transmit high-quality image information in a scattering environment. In this paper, we focus on two concerns recently emerged in the GI modality: one is the vulnerability to forgery attacks in GI-based optical encryption [Opt. Lett.45, 3917 (2020)OPLEDP0146-959210.1364/OL.392424], and the other is the potential threat of GI to personal privacy regarding non-invasive imaging [Opt. Express28, 17232 (2020)OPEXFF1094-408710.1364/OE.391788]. The core idea is to recommend introducing weighted multiplicative signals [Opt. Express27, 36505 (2019)OPEXFF1094-408710.1364/OE.27.036505] into the computational GI system, whether on the transmitting end or the receiving end. At the transmitting end, the random multiplicative signal can be used as an additional key that can reduce the possibility of forgery attacks, thereby increasing image transmission security. On the receiving end, the introduction of a random multiplicative signal to a spatial scattering medium makes it a "spatiotemporal" scattering medium, whose transmittance changes with time. Further, the spatiotemporal scattering medium can disable direct imaging and GI at the same time with low cost, thereby having great potential in privacy protection in daily lives.

17.
Opt Express ; 28(21): 31163-31179, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115096

ABSTRACT

Computational ghost imaging (CGI) can reconstruct the pixelated image of a target without lenses and image sensors. In almost all spatial CGI systems using various patterns reported in the past, people often only focus on the distribution of patterns in the spatial dimension but ignore the possibility of encoding in the time dimension or even the space-time dimension. Although the random illumination pattern in CGI always brings some inevitable background noise to the recovered image, it has considerable advantages in optical encryption, authentication, and watermarking technologies. In this paper, we focus on stimulating the potential of random lighting patterns in the space-time dimension for embedding large amounts of information. Inspired by binary CGI and second-order correlation operations, we design two novel generation schemes of pseudo-random patterns for information embedding that are suitable for different scenarios. Specifically, we embed a total of 10,000 ghost images (64 × 64 pixels) of the designed Hadamard-matrix-based data container patterns in the framework of CGI, and these ghost images can be quantitatively decoded to two 8-bit standard grayscale images, with a total data volume of 1, 280, 000 bits. Our scheme has good noise resistance and a low symbol error rate. One can design the number of lighting patterns and the information capacity of the design patterns according to the trade-off between accuracy and efficiency. Our scheme, therefore, paves the way for CGI using random lighting patterns to embed large amounts of information and provides new insights into CGI-based encryption, authentication, and watermarking technologies.

18.
Opt Express ; 27(25): 36505-36523, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873428

ABSTRACT

In previous single-pixel imaging systems, the light source was generally idle with respect to time. Here, we propose a novel image fusion and visible watermarking scheme based on Fourier single-pixel imaging (FSPI) with a multiplexed time-varying (TV) signal, which is generated by the watermark pattern hidden in the light source. We call this scheme TV-FSPI. With TV-FSPI, we can realize high-quality visible image watermarking, encrypted image watermarking and full-color visible image watermarking. We also discuss the extension to invisible watermarking based on TV-FSPI. Furthermore, we don't have to recode illumination patterns, because TV-FSPI can be extended to existing mainstream illumination patterns, such as random illumination mode and Hadamard illumination mode. Thus TV-FSPI has the potential to be used in single-pixel broadcasting system and multi-spectral single-pixel imaging system.

19.
Sci Rep ; 9(1): 12782, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31484953

ABSTRACT

Single-pixel imaging, which is also known as computational ghost imaging, can reconstruct an entire image using one non-spatially resolved detector. However, it often requires a large amount of sampling, severely limiting its application. In this paper, we discuss the implementation of secured regions of interest (SROIs) in single-pixel imaging and illustrate its application using two experiments. Under a limited number of sampling times, we improved the resolution and recovered spectral information of interest in the ROI. Meanwhile, this scheme has high information security with high encryption and has great potential for single-pixel video and compressive multi-spectral single-pixel imaging.

20.
World Neurosurg ; 106: 945-952, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28739520

ABSTRACT

OBJECTIVE: To observe the clinical effects of posterior percutaneous full-endoscopic cervical foraminotomy in patients with osseous foraminal stenosis. METHODS: Nine patients with osseous foraminal stenosis underwent surgery using the posterior percutaneous full-endoscopic cervical foraminotomy technique and received follow-up care for 1 year. The visual analog scale score, neck disability index, and modified Macnab criteria were recorded at the last follow-up. All patients underwent three-dimensional computed tomography of the cervical spine, which was reviewed within 1 week postoperatively. RESULTS: All operations were successful, and all patients received follow-up care. The mean operation time was 80 minutes. Surgical bleeding was not observed, and no related complications occurred. Postoperative visual analog scale and neck disability index scores were significantly reduced compared with the preoperative assessment. In addition, imaging showed that the osteophytes in the intervertebral foramen were adequately resected. According to modified Macnab criteria, 6 cases showed excellent results, 3 cases showed good results, and no fine or bad results were observed. CONCLUSIONS: Posterior percutaneous full-endoscopic cervical foraminotomy can accomplish full nerve root decompression and is a safe, feasible procedure. Therefore, it can be a treatment option for patients with osseous foraminal stenosis.


Subject(s)
Cervical Vertebrae/surgery , Decompression, Surgical , Foraminotomy , Intervertebral Disc Displacement/surgery , Spinal Stenosis/surgery , Adult , Constriction, Pathologic/surgery , Decompression, Surgical/methods , Diskectomy/methods , Female , Foraminotomy/methods , Humans , Male , Middle Aged , Neuroendoscopy , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...