Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Mol Ther Oncol ; 32(2): 200807, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38745749

ABSTRACT

V937 is an investigational, genetically unmodified Kuykendall strain of coxsackievirus A21, which has been evaluated in the clinic for advanced solid tumor malignancies. V937 specifically infects and lyses tumor cells that overexpress intercellular adhesion molecule-1 (ICAM-1). Intratumoral V937 as a monotherapy and in combination with anti-PD-1 antibody pembrolizumab has shown clinical response in patients with metastatic melanoma, which overexpresses ICAM-1. Here, we investigate in preclinical studies the potential bidirectional cross-talk between hepatocellular carcinomas (HCC) or colorectal carcinomas (CRC) and immune cells when treated with V937 alone or in combination with pembrolizumab. We show that while V937 treatment of tumor cell lines or organoids or peripheral blood mononuclear cells (PBMCs) alone induced a minimal immunological response, V937 treatment of non-contact co-cultures of tumor cell lines or CRC organoids with PBMCs led to robust production of proinflammatory cytokines and immune cell activation. In addition, both recombinant interferon-gamma and pembrolizumab increased ICAM-1 on tumor cell lines or organoids and, in turn, amplified V937-mediated oncolysis and immunogenicity. These findings provide critical mechanistic insights on the cross-talk between V937-mediated oncolysis and immune responses, demonstrating the therapeutic potential of V937 in combination with PD-1 blockade to treat immunologically quiescent cancers.

2.
JCO Precis Oncol ; 7: e2200317, 2023 04.
Article in English | MEDLINE | ID: mdl-37099733

ABSTRACT

PURPOSE: In the two-cohort phase II KEYNOTE-086 study (ClinicalTrials.gov identifier: NCT02447003), first-line and second-line or later pembrolizumab monotherapy demonstrated antitumor activity in metastatic triple-negative breast cancer (mTNBC; N = 254). This exploratory analysis evaluates the association between prespecified molecular biomarkers and clinical outcomes. METHODS: Cohort A enrolled patients with disease progression after one or more systemic therapies for metastatic disease irrespective of PD-L1 status; Cohort B enrolled patients with previously untreated PD-L1-positive (combined positive score [CPS] ≥ 1) metastatic disease. The association between the following biomarkers as continuous variables and clinical outcomes (objective response rate [ORR], progression-free survival [PFS], and overall survival [OS]) was evaluated: PD-L1 CPS (immunohistochemistry), cluster of differentiation 8 (CD8; immunohistochemistry), stromal tumor-infiltrating lymphocyte (sTIL; hematoxylin and eosin staining), tumor mutational burden (TMB; whole-exome sequencing [WES]), homologous recombination deficiency-loss of heterozygosity, mutational signature 3 (WES), mutational signature 2 (apolipoprotein B mRNA editing catalytic polypeptide-like; WES), T-cell-inflamed gene expression profile (TcellinfGEP; RNA sequencing), and 10 non-TcellinfGEP signatures (RNA sequencing); Wald test P values were calculated, and significance was prespecified at α = 0.05. RESULTS: In the combined cohorts (A and B), PD-L1 (P = .040), CD8 (P < .001), sTILs (P = .012), TMB (P = .007), and TcellinfGEP (P = .011) were significantly associated with ORR; CD8 (P < .001), TMB (P = .034), Signature 3 (P = .009), and TcellinfGEP (P = .002) with PFS; and CD8 (P < .001), sTILs (P = .004), TMB (P = .025), and TcellinfGEP (P = .001) with OS. None of the non-TcellinfGEP signatures were associated with outcomes of pembrolizumab after adjusting for the TcellinfGEP. CONCLUSION: In this exploratory biomarker analysis from KEYNOTE-086, baseline tumor PD-L1, CD8, sTILs, TMB, and TcellinfGEP were associated with improved clinical outcomes of pembrolizumab and may help identify patients with mTNBC who are most likely to respond to pembrolizumab monotherapy.


Subject(s)
Antineoplastic Agents, Immunological , Triple Negative Breast Neoplasms , Humans , B7-H1 Antigen/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/genetics
3.
J Biol Chem ; 299(3): 102902, 2023 03.
Article in English | MEDLINE | ID: mdl-36642178

ABSTRACT

The programmed cell death protein-1 (PD-1) is highly expressed on the surface of antigen-specific exhausted T cells and, upon interaction with its ligand PD-L1, can result in inhibition of the immune response. Anti-PD-1 treatment has been shown to extend survival and result in durable responses in several cancers, yet only a subset of patients benefit from this therapy. Despite the implication of metabolic alteration following cancer immunotherapy, mechanistic associations between antitumor responses and metabolic changes remain unclear. Here, we used desorption electrospray ionization mass spectrometry imaging to examine the lipid profiles of tumor tissue from three syngeneic murine models with varying treatment sensitivity at the baseline and at three time points post-anti-PD-1 therapy. These imaging experiments revealed specific alterations in the lipid profiles associated with the degree of response to treatment and allowed us to identify a significant increase of long-chain polyunsaturated lipids within responsive tumors following anti-PD-1 therapy. Immunofluorescence imaging of tumor tissues also demonstrated that the altered lipid profile associated with treatment response is localized to dense regions of tumor immune infiltrates. Overall, these results indicate that effective anti-PD-1 therapy modulates lipid metabolism in tumor immune infiltrates, and we thereby propose that further investigation of the related immune-metabolic pathways may be useful for better understanding success and failure of anti-PD-1 therapy.


Subject(s)
Antibodies, Monoclonal , B7-H1 Antigen , Neoplasms , Animals , Humans , Mice , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Immunotherapy , Lipids , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , T-Lymphocytes/metabolism , Tumor Microenvironment
4.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35793874

ABSTRACT

BACKGROUND: Immunotherapies targeting programmed cell death-1 (PD-1) and its ligands have improved clinical outcomes for advanced melanoma. However, many tumors exhibit primary resistance or acquire secondary resistance after an initial positive response. The mechanisms of resistance are not well understood, and no validated predictive biomarkers are available. This exploratory study aimed to characterize baseline differences and molecular changes arising during treatment in acral and mucosal melanomas that exhibited primary or secondary resistance to anti-PD-1 monotherapy. METHODS: This was an observational retrospective study of 124 patients who had been treated for metastatic acral or mucosal melanoma with anti-PD-1 monotherapy. Tumor samples were collected at baseline (all patients) and post-treatment (resistant tumors only) and were assayed by immunohistochemistry, whole-exome sequencing, and RNA sequencing. RESULTS: At baseline, more non-progressor than resistant tumors exhibited expression of PD-L1, immune cell infiltration, and high tumor mutational burden (TMB); baseline PD-L1 expression was also more common in secondary-resistant than in primary-resistant tumors as well as in late versus early secondary-resistant tumors. Non-progressor tumors also had higher median baseline expression of an 18-gene T cell-inflamed gene expression profile (TcellinfGEP). Among resistant tumors, the proportion of PD-L1-positive melanomas and the expression of the TcellinfGEP mRNA signature increased during treatment, while the expression of mRNA signatures related to WNT and INFA1 signaling decreased. There was evidence for greater changes from baseline in secondary-resistant versus primary-resistant tumors for some markers, including expression of RAS-related and WNT-related mRNA signatures and density of CD11c+ and FOXP3+ T cells. Greater changes in CD11c+ cell density were observed in early compared with late secondary-resistant tumors. CONCLUSIONS: Our findings suggest that TcellinfGEP and PD-L1 expression, TMB, immune cell infiltration, and RAS and WNT signaling warrant further investigation as potential mechanisms and/or biomarkers of anti-PD-1 therapy resistance in acral and mucosal melanomas. Confirmation of these findings in larger populations is needed.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Biomarkers/analysis , Humans , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , RNA, Messenger/biosynthesis , Retrospective Studies
6.
Mol Cancer Ther ; 21(3): 427-439, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34965960

ABSTRACT

Targeting the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway with immunotherapy has revolutionized the treatment of many cancers. Somatic tumor mutational burden (TMB) and T-cell-inflamed gene expression profile (GEP) are clinically validated pan-tumor genomic biomarkers that can predict responsiveness to anti-PD-1/PD-L1 monotherapy in many tumor types. We analyzed the association between these biomarkers and the efficacy of PD-1 inhibitor in 11 commonly used preclinical syngeneic tumor mouse models using murinized rat anti-mouse PD-1 DX400 antibody muDX400, a surrogate for pembrolizumab. Response to muDX400 treatment was broadly classified into three categories: highly responsive, partially responsive, and intrinsically resistant to therapy. Molecular and cellular profiling validated differences in immune cell infiltration and activation in the tumor microenvironment of muDX400-responsive tumors. Baseline and on-treatment genomic analysis showed an association between TMB, murine T-cell-inflamed gene expression profile (murine-GEP), and response to muDX400 treatment. We extended our analysis to investigate a canonical set of cancer and immune biology-related gene signatures, including signatures of angiogenesis, myeloid-derived suppressor cells, and stromal/epithelial-to-mesenchymal transition/TGFß biology previously shown to be inversely associated with the clinical efficacy of immune checkpoint blockade. Finally, we evaluated the association between murine-GEP and preclinical efficacy with standard-of-care chemotherapy or antiangiogenic agents that previously demonstrated promising clinical activity, in combination with muDX400. Our profiling studies begin to elucidate the underlying biological mechanisms of response and resistance to PD-1/PD-L1 blockade represented by these models, thereby providing insight into which models are most appropriate for the evaluation of orthogonal combination strategies.


Subject(s)
B7-H1 Antigen , Immunotherapy , Neoplasms , Programmed Cell Death 1 Receptor , Animals , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/genetics , Cell Line, Tumor , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment
7.
Front Oncol ; 11: 598001, 2021.
Article in English | MEDLINE | ID: mdl-33912442

ABSTRACT

PURPOSE: The aim of this study was to characterize chondrosarcoma tumor infiltration by immune cells and the expression of immunologically relevant molecules. This information may contribute to our understanding of the role of immunological events in the pathogenesis of chondrosarcoma and to the rational design of immunotherapeutic strategies. PATIENTS AND METHODS: A tissue microarray (TMA) containing 52 conventional and 24 dedifferentiated chondrosarcoma specimens was analyzed by immunohistochemical staining for the expression of parameters associated with tumor antigen-specific immune responses, namely, CD4+ and CD8+ tumor infiltrating lymphocytes (TILs) and the expression of HLA class I heavy chain, beta-2 microglobulin (ß2m), HLA class II and immune checkpoint molecules, B7-H3 and PD-1/PD-L1. The results were correlated with histopathological characteristics and the clinical course of the disease. RESULTS: CD8+ TILs were present in 21% of the conventional and 90% of the dedifferentiated chondrosarcoma tumors tested. B7-H3 was expressed in 69% of the conventional and 96% of the dedifferentiated chondrosarcoma tumors tested. PD-1 and PD-L1 were expressed 53% and 33% respectively of the dedifferentiated tumors tested. PD-L1 expression was associated with shorter time to metastasis. CONCLUSION: The tumor infiltration by lymphocytes suggests that chondrosarcoma is immunogenic. Defects in HLA class I antigen and expression of the checkpoint molecules B7-H3 and PD-1/PD-L1 suggest that tumor cells utilize escape mechanisms to avoid immune recognition and destruction. This data implies that chondrosarcoma will benefit from strategies that enhance the immunogenicity of tumor antigens and/or counteract the escape mechanisms.

8.
Clin Cancer Res ; 27(4): 1048-1057, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33199490

ABSTRACT

PURPOSE: VEGF is upregulated in glioblastoma and may contribute to immunosuppression. We performed a phase II study of pembrolizumab alone or with bevacizumab in recurrent glioblastoma. PATIENTS AND METHODS: Eighty bevacizumab-naïve patients with recurrent glioblastoma were randomized to pembrolizumab with bevacizumab (cohort A, n = 50) or pembrolizumab monotherapy (cohort B, n = 30). The primary endpoint was 6-month progression-free survival (PFS-6). Assessed biomarkers included evaluation of tumor programmed death-ligand 1 expression, tumor-infiltrating lymphocyte density, immune activation gene expression signature, and plasma cytokines. The neurologic assessment in neuro-oncology (NANO) scale was used to prospectively assess neurologic function. RESULTS: Pembrolizumab alone or with bevacizumab was well tolerated but of limited benefit. For cohort A, PFS-6 was 26.0% [95% confidence interval (CI), 16.3-41.5], median overall survival (OS) was 8.8 months (95% CI, 7.7-14.2), objective response rate (ORR) was 20%, and median duration of response was 48 weeks. For cohort B, PFS-6 was 6.7% (95% CI, 1.7-25.4), median OS was 10.3 months (95% CI, 8.5-12.5), and ORR was 0%. Tumor immune markers were not associated with OS, but worsened OS correlated with baseline dexamethasone use and increased posttherapy plasma VEGF (cohort A) and mutant IDH1, unmethylated MGMT, and increased baseline PlGF and sVEGFR1 levels (cohort B). The NANO scale contributed to overall outcome assessment. CONCLUSIONS: Pembrolizumab was ineffective as monotherapy and with bevacizumab for recurrent glioblastoma. The infrequent radiographic responses to combinatorial therapy were durable. Tumor immune biomarkers did not predict outcome. Baseline dexamethasone use and tumor MGMT warrant further study as potential biomarkers in glioblastoma immunotherapy trials.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Bevacizumab/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/adverse effects , Biomarkers, Tumor/blood , Biomarkers, Tumor/immunology , Brain Neoplasms/blood , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Drug Monitoring/methods , Female , Glioblastoma/blood , Glioblastoma/immunology , Glioblastoma/mortality , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/mortality , Prognosis , Progression-Free Survival , Prospective Studies
9.
Breast Cancer Res ; 22(1): 134, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33267869

ABSTRACT

BACKGROUND: Inflammatory breast cancer (IBC) is a rare but aggressive carcinoma characterized by severe erythema and edema of the breast, with many patients presenting in advanced metastatic disease. The "inflammatory" nature is not due to classic immune-mediated inflammation, but instead results from tumor-mediated blockage of dermal lymphatic ducts. Previous work has shown that expression of PD-L1 on tumor cells can suppress T cell activation in triple-negative (TN) non-IBC breast cancer. In the present work, we investigated immune parameters in peripheral blood of metastatic IBC patients to determine whether cellular components of the immune system are altered, thereby contributing to pathogenesis of the disease. These immune parameters were also compared to PD-1 and PD-L1 expression in IBC tumor biopsies. METHODS: Flow cytometry-based immune phenotyping was performed using fresh peripheral blood from 14 stage IV IBC patients and compared to 11 healthy age-similar control women. Immunohistochemistry for CD20, CD3, PD-1, and PD-L1 was performed on tumor biopsies of these metastatic IBC patients. RESULTS: IBC patients with Stage IV disease had lymphopenia with significant reductions in circulating T, B, and NK cells. Reductions were observed in all subsets of CD4+ T cells, whereas reductions in CD8+ T cells were more concentrated in memory subsets. Immature cytokine-producing CD56bright NK cells expressed higher levels of FcγRIIIa and cytolytic granule components, suggesting accelerated maturation to cytolytic CD56dim cells. Immunohistochemical analysis of tumor biopsies demonstrated moderate to high expression of PD-1 in 18.2% of patients and of PD-L1 in 36.4% of patients. Interestingly, a positive correlation was observed between co-expression levels of PD-L1 and PD-1 in tumor biopsies, and higher expression of PD-L1 in tumor biopsies correlated with higher expression of cytolytic granule components in blood CD4+ T cells and CD56dim NK cells, and higher numbers of CD8+ effector memory T cells in peripheral blood. PD-1 expression in tumor also correlated with increased infiltration of CD20+ B cells in the tumor. CONCLUSIONS: Our results suggest that while lymphocyte populations are severely compromised in stage IV IBC patients, an immune response toward the tumor had occurred in some patients, providing biological rationale to evaluate PD-1/PD-L1 immunotherapies for IBC.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma/immunology , Inflammatory Breast Neoplasms/immunology , T-Lymphocytes/immunology , Adult , Aged , Antigens, CD20/analysis , Antigens, CD20/metabolism , B7-H1 Antigen/analysis , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Biopsy , Breast/immunology , Breast/pathology , CD3 Complex/analysis , CD3 Complex/metabolism , Carcinoma/blood , Carcinoma/diagnosis , Carcinoma/secondary , Case-Control Studies , Female , Flow Cytometry , Humans , Immunity, Cellular , Immunohistochemistry , Immunophenotyping/methods , Inflammatory Breast Neoplasms/blood , Inflammatory Breast Neoplasms/diagnosis , Inflammatory Breast Neoplasms/pathology , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged , Neoplasm Staging , Programmed Cell Death 1 Receptor/analysis , Programmed Cell Death 1 Receptor/metabolism , Retrospective Studies , T-Lymphocytes/metabolism
10.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33127658

ABSTRACT

BACKGROUND: Programmed cell death protein 1 (PD-1) and CTLA4 combination blockade enhances clinical efficacy in melanoma compared with targeting either checkpoint alone; however, clinical response improvement is coupled with increased risk of developing immune-related adverse events (irAE). Delineating the mechanisms of checkpoint blockade-mediated irAE has been hampered by the lack of animal models that replicate these clinical events. METHODS: We have developed a mouse model of checkpoint blockade-mediated enterocolitis via prolonged administration of an Fc-competent anti-CTLA4 antibody. RESULTS: Sustained treatment with Fc-effector, but not Fc-mutant or Fc-null, anti-CTLA4 antagonist for 7 weeks resulted in enterocolitis. Moreover, combining Fc-null or Fc-mutant CTLA4 antagonists with PD-1 blockade results in potent antitumor combination efficacy indicating that Fc-effector function is not required for combination benefit. CONCLUSION: These data suggest that using CTLA4 antagonists with no Fc-effector function can mitigate gut inflammation associated with anti-CTLA4 antibody therapy yet retain potent antitumor activity in combination with PD-1 blockade.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Inflammation/physiopathology , Programmed Cell Death 1 Receptor/metabolism , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL