Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
HGG Adv ; 3(3): 100102, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35469323

ABSTRACT

Loss-of-function variants in PHD Finger Protein 8 (PHF8) cause Siderius X-linked intellectual disability (ID) syndrome, hereafter called PHF8-XLID. PHF8 is a histone demethylase that is important for epigenetic regulation of gene expression. PHF8-XLID is an under-characterized disorder with only five previous reports describing different PHF8 predicted loss-of-function variants in eight individuals. Features of PHF8-XLID include ID and craniofacial dysmorphology. In this report we present 16 additional individuals with PHF8-XLID from 11 different families of diverse ancestry. We also present five individuals from four different families who have ID and a variant of unknown significance in PHF8 with no other explanatory variant in another gene. All affected individuals exhibited developmental delay and all but two had borderline to severe ID. Of the two who did not have ID, one had dyscalculia and the other had mild learning difficulties. Craniofacial findings such as hypertelorism, microcephaly, elongated face, ptosis, and mild facial asymmetry were found in some affected individuals. Orofacial clefting was seen in three individuals from our cohort, suggesting that this feature is less common than previously reported. Autism spectrum disorder and attention deficit hyperactivity disorder, which were not previously emphasized in PHF8-XLID, were frequently observed in affected individuals. This series expands the clinical phenotype of this rare ID syndrome caused by loss of PHF8 function.

3.
Mol Genet Genomic Med ; 10(4): e1900, 2022 04.
Article in English | MEDLINE | ID: mdl-35189041

ABSTRACT

BACKGROUND: Individuals with various sized terminal duplications of chromosome 5p or terminal deletions of chromosome 18q have been described. These aberrations may cause congenital malformations and intellectual disability of varying severity. METHODS: Via an international collaborative effort, we obtained a cytogenetic diagnosis for a 5-year-old boy of Afro-Caribbean ancestry who has global developmental delay, dysmorphology, hypotonia, feeding difficulties, bilateral club feet, and intellectual disability. RESULTS: Conventional G-banded karyotyping showed additional chromatin of unknown origin on the long arm of chromosome 18. SNP microarray confirmed the loss of ~6.4 Mb from chromosome 18q: arr[hg19] 18q22.3-q23(71,518,518-77,943,115)x1. The source of the additional chromatin was determined from the microarray to be ~32 Mb from the short arm of chromosome 5 (arr[hg19] 5p13.3-p15.33(51,045-32,062,984)x3). The unbalanced translocation was verified by fluorescent in situ hybridization (FISH). Both parents are healthy and have normal karyotypes suggesting that this abnormality arose de novo in the proband, although gonadal mosaicism in a parent cannot be excluded. CONCLUSION: The combination of clinical features in this individual is most likely due to the partial deletion of 18q and partial duplication of 5p, which to our knowledge has not been previously described.


Subject(s)
Chromosomes, Human, Pair 18 , Intellectual Disability , Chromatin , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/genetics , Translocation, Genetic
4.
J Inherit Metab Dis ; 44(4): 1001-1012, 2021 07.
Article in English | MEDLINE | ID: mdl-33734437

ABSTRACT

Pathogenic variants in ALG13 (ALG13 UDP-N-acetylglucosaminyltransferase subunit) cause an X-linked congenital disorder of glycosylation (ALG13-CDG) where individuals have variable clinical phenotypes that include developmental delay, intellectual disability, infantile spasms, and epileptic encephalopathy. Girls with a recurrent de novo c.3013C>T; p.(Asn107Ser) variant have normal transferrin glycosylation. Using a highly sensitive, semi-quantitative flow injection-electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) N-glycan assay, we report subtle abnormalities in N-glycans that normally account for <0.3% of the total plasma glycans that may increase up to 0.5% in females with the p.(Asn107Ser) variant. Among our 11 unrelated ALG13-CDG individuals, one male had abnormal serum transferrin glycosylation. We describe seven previously unreported subjects including three novel variants in ALG13 and report a milder neurodevelopmental course. We also summarize the molecular, biochemical, and clinical data for the 53 previously reported ALG13-CDG individuals. We provide evidence that ALG13 pathogenic variants may mildly alter N-linked protein glycosylation in both female and male subjects, but the underlying mechanism remains unclear.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Intellectual Disability/physiopathology , N-Acetylglucosaminyltransferases/genetics , Congenital Disorders of Glycosylation/physiopathology , Female , Genetic Variation , Glycosylation , Humans , Intellectual Disability/genetics , Male , Phenotype , Transferrin/metabolism
5.
Am J Med Genet C Semin Med Genet ; 184(4): 1030-1041, 2020 12.
Article in English | MEDLINE | ID: mdl-33274544

ABSTRACT

We describe our experiences with organizing pro bono medical genetics and neurology outreach programs on several different resource-limited islands in the West Indies. Due to geographic isolation, small population sizes, and socioeconomic disparities, most Caribbean islands lack medical services for managing, diagnosing, and counseling individuals with genetic disorders. From 2015 to 2019, we organized 2-3 clinics per year on various islands in the Caribbean. We also organized a week-long clinic to provide evaluations for children suspected of having autism spectrum disorder. Consultations for over 100 different individuals with suspected genetic disorders were performed in clinics or during home visits following referral by locally registered physicians. When possible, follow-up visits were attempted. When available and appropriate, clinical samples were shipped to collaborating laboratories for molecular analysis. Laboratory tests included karyotyping, cytogenomic microarray analysis, exome sequencing, triplet repeat expansion testing, blood amino acid level determination, biochemical assaying, and metabolomic profiling. We believe that significant contributions to healthcare by genetics professionals can be made even if availability is limited. Visiting geneticists may help by providing continuing medical education seminars. Clinical teaching rounds help to inform local physicians regarding the management of genetic disorders with the aim of generating awareness of genetic conditions. Even when only periodically available, a visiting geneticist may benefit affected individuals, their families, their local physicians, and the community at large.


Subject(s)
Autism Spectrum Disorder , Physicians , Child , Delivery of Health Care , Humans , Referral and Consultation , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL
...