Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Environ Microbiol ; 74(10): 3014-21, 2008 May.
Article in English | MEDLINE | ID: mdl-18378660

ABSTRACT

A field study was conducted to determine the microbial community structures of streambed sediments across diverse geographic and climatic areas. Sediment samples were collected from three adjacent headwater forest streams within three biomes, eastern deciduous (Pennsylvania), southeastern coniferous (New Jersey), and tropical evergreen (Guanacaste, Costa Rica), to assess whether there is biome control of stream microbial community structure. Bacterial abundance, microbial biomass, and bacterial and microbial community structures were determined using classical, biochemical, and molecular methods. Microbial biomass, determined using phospholipid phosphate, was significantly greater in the southeastern coniferous biome, likely due to the smaller grain size, higher organic content, and lower levels of physical disturbance of these sediments. Microbial community structure was determined using phospholipid fatty acid (PLFA) profiles and bacterial community structure from terminal restriction fragment length polymorphism and edited (microeukaryotic PLFAs removed) PLFA profiles. Principal component analysis (PCA) was used to investigate patterns in total microbial community structure. The first principal component separated streams based on the importance of phototrophic microeukaryotes within the community, while the second separated southeastern coniferous streams from all others based on increased abundance of fungal PLFAs. PCA also indicated that within- and among-stream variations were small for tropical evergreen streams and large for southeastern coniferous streams. A similar analysis of bacterial community structure indicated that streams within biomes had similar community structures, while each biome possessed a unique streambed community, indicating strong within-biome control of stream bacterial community structure.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Eukaryota/isolation & purification , Geologic Sediments/microbiology , Animals , Bacteria/genetics , Biomass , Climate , Costa Rica , DNA Fingerprinting , DNA, Algal/genetics , DNA, Bacterial/genetics , DNA, Protozoan/genetics , Eukaryota/genetics , Geography , Geologic Sediments/chemistry , New Jersey , Pennsylvania , Phospholipids/analysis , Polymorphism, Restriction Fragment Length , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL