Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Lab Chip ; 23(20): 4514-4527, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37766577

ABSTRACT

Background: COVID-19 pandemic has caused more than 6 million deaths worldwide. Co-morbid conditions such as Type 2 Diabetes (T2D) have increased mortality in COVID-19. With limited translatability of in vitro and small animal models to human disease, human organ-on-a-chip models are an attractive platform to model in vivo disease conditions and test potential therapeutics. Methods: T2D or non-diabetic patient-derived macrophages and human liver sinusoidal endothelial cells were seeded, along with normal hepatocytes and stellate cells in the liver-on-a-chip (LAMPS - liver acinus micro physiological system), perfused with media mimicking non-diabetic fasting or T2D (high levels of glucose, fatty acids, insulin, glucagon) states. The macrophages and endothelial cells were transduced to overexpress the SARS-CoV2-S (spike) protein with appropriate controls before their incorporation into LAMPS. Cytokine concentrations in the efflux served as a read-out of the effects of S-protein expression in the different experimental conditions (non-diabetic-LAMPS, T2D-LAMPS), including incubation with tocilizumab, an FDA-approved drug for severe COVID-19. Findings: S-protein expression in the non-diabetic LAMPS led to increased cytokines, but in the T2D-LAMPS, this was significantly amplified both in the number and magnitude of key pro-inflammatory cytokines (IL6, CCL3, IL1ß, IL2, TNFα, etc.) involved in cytokine storm syndrome (CSS), mimicking severe COVID-19 infection in T2D patients. Compared to vehicle control, tocilizumab (IL6-receptor antagonist) decreased the pro-inflammatory cytokine secretion in T2D-COVID-19-LAMPS but not in non-diabetic-COVID-19-LAMPS. Interpretation: macrophages and endothelial cells play a synergistic role in the pathophysiology of the hyper-inflammatory response seen with COVID-19 and T2D. The effect of Tocilizumab was consistent with large clinical trials that demonstrated Tocilizumab's efficacy only in critically ill patients with severe disease, providing confirmatory evidence that the T2D-COVID-19-LAMPS is a robust platform to model human in vivo pathophysiology of COVID-19 in T2D and for screening potential therapeutics.

2.
Cell Rep ; 42(1): 111904, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36662616

ABSTRACT

TEAD1 and the mammalian Hippo pathway regulate cellular proliferation and function, though their regulatory function in ß cells remains poorly characterized. In this study, we demonstrate that while ß cell-specific TEAD1 deletion results in a cell-autonomous increase of ß cell proliferation, ß cell-specific deletion of its canonical coactivators, YAP and TAZ, does not affect proliferation, suggesting the involvement of other cofactors. Using an improved split-GFP system and yeast two-hybrid platform, we identify VGLL4 and MENIN as TEAD1 corepressors in ß cells. We show that VGLL4 and MENIN bind to TEAD1 and repress the expression of target genes, including FZD7 and CCN2, which leads to an inhibition of ß cell proliferation. In conclusion, we demonstrate that TEAD1 plays a critical role in ß cell proliferation and identify VGLL4 and MENIN as TEAD1 corepressors in ß cells. We propose that these could be targeted to augment proliferation in ß cells for reversing diabetes.


Subject(s)
DNA-Binding Proteins , Insulin-Secreting Cells , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , TEA Domain Transcription Factors , Co-Repressor Proteins , Insulin-Secreting Cells/metabolism , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Mammals/metabolism
3.
Nucleic Acids Res ; 50(22): 12723-12738, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36484096

ABSTRACT

The Hippo-TEAD pathway regulates cellular proliferation and function. The existing paradigm is that TEAD co-activators, YAP and TAZ, and co-repressor, VGLL4, bind to the pocket region of TEAD1 to enable transcriptional activation or repressive function. Here we demonstrate a pocket-independent transcription repression mechanism whereby TEAD1 controls cell proliferation in both non-malignant mature differentiated cells and in malignant cell models. TEAD1 overexpression can repress tumor cell proliferation in distinct cancer cell lines. In pancreatic ß cells, conditional knockout of TEAD1 led to a cell-autonomous increase in proliferation. Genome-wide analysis of TEAD1 functional targets via transcriptomic profiling and cistromic analysis revealed distinct modes of target genes, with one class of targets directly repressed by TEAD1. We further demonstrate that TEAD1 controls target gene transcription in a motif-dependent and orientation-independent manner. Mechanistically, we show that TEAD1 has a pocket region-independent, direct repressive function via interfering with RNA polymerase II (POLII) binding to target promoters. Our study reveals that TEAD1 target genes constitute a mutually restricted regulatory loop to control cell proliferation and uncovers a novel direct repression mechanism involved in its transcriptional control that could be leveraged in future studies to modulate cell proliferation in tumors and potentially enhance the proliferation of normal mature cells.


Subject(s)
Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , TEA Domain Transcription Factors , Hippo Signaling Pathway , Cell Proliferation/genetics
4.
iScience ; 25(8): 104771, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982797

ABSTRACT

Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In ß-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no ß-arrestin2 recruitment. In contrast, D2R recruits G proteins and ß-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on ß-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and ß-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.

5.
Metabolites ; 12(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35736460

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.

7.
Transl Psychiatry ; 11(1): 59, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33589583

ABSTRACT

Dopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and ß-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and ß-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and ß-cell targets to produce metabolic disturbances.


Subject(s)
Dopamine , Glucagon , Adrenergic Agents , Glucagon/metabolism , Insulin/metabolism , Insulin Secretion , Norepinephrine , Pancreas/metabolism
8.
J Am Heart Assoc ; 10(2): e018151, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33401929

ABSTRACT

Background Despite compelling epidemiological evidence that circadian disruption inherent to long-term shift work enhances atherosclerosis progression and vascular events, the underlying mechanisms remain poorly understood. A challenge to the use of mouse models for mechanistic and interventional studies involving light-dark patterns is that the spectral and absolute sensitivities of the murine and human circadian systems are very different, and light stimuli in nocturnal mice should be scaled to represent the sensitivities of the human circadian system. Methods and Results We used calibrated devices to deliver to low-density lipoprotein receptor knockout mice light-dark patterns representative of that experienced by humans working day shifts or rotating shift schedules. Mice under day shifts were maintained under regular 12 hours of light and 12 hours of dark cycles. Mice under rotating shift schedules were subjected for 11 weeks to reversed light-dark patterns 4 days in a row per week, followed by 3 days of regular light-dark patterns. In both protocols the light phases consisted of monochromatic green light at an irradiance of 4 µW/cm2. We found that the shift work paradigm disrupts the foam cell's molecular clock and increases endoplasmic reticulum stress and apoptosis. Lesions of mice under rotating shift schedules were larger and contained less prostabilizing fibrillar collagen and significantly increased areas of necrosis. Conclusions Low-density lipoprotein receptor knockout mice under light-dark patterns analogous to that experienced by rotating shift workers develop larger and more vulnerable plaques and may represent a valuable model for further mechanistic and/or interventional studies against the deleterious vascular effects of rotating shift work.


Subject(s)
Apoptosis/physiology , Atherosclerosis , Circadian Clocks/physiology , Endoplasmic Reticulum Stress/physiology , Foam Cells , Plaque, Atherosclerotic , Shift Work Schedule , Animals , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Circadian Rhythm/physiology , Foam Cells/metabolism , Foam Cells/pathology , Humans , Lipoproteins, LDL/genetics , Mice , Mice, Knockout , Models, Animal , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
9.
Am J Physiol Heart Circ Physiol ; 319(1): H89-H99, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32502376

ABSTRACT

Mitochondrial dysfunction occurs in most forms of heart failure. We have previously reported that Tead1, the transcriptional effector of Hippo pathway, is critical for maintaining adult cardiomyocyte function, and its deletion in adult heart results in lethal acute dilated cardiomyopathy. Growing lines of evidence indicate that Hippo pathway plays a role in regulating mitochondrial function, although its role in cardiomyocytes is unknown. Here, we show that Tead1 plays a critical role in regulating mitochondrial OXPHOS in cardiomyocytes. Assessment of mitochondrial bioenergetics in isolated mitochondria from adult hearts showed that loss of Tead1 led to a significant decrease in respiratory rates, with both palmitoylcarnitine and pyruvate/malate substrates, and was associated with reduced electron transport chain complex I activity and expression. Transcriptomic analysis from Tead1-knockout myocardium revealed genes encoding oxidative phosphorylation, TCA cycle, and fatty acid oxidation proteins as the top differentially enriched gene sets. Ex vivo loss of function of Tead1 in primary cardiomyocytes also showed diminished aerobic respiration and maximal mitochondrial oxygen consumption capacity, demonstrating that Tead1 regulation of OXPHOS in cardiomyocytes is cell autonomous. Taken together, our data demonstrate that Tead1 is a crucial transcriptional node that is a cell-autonomous regulator, a large network of mitochondrial function and biogenesis related genes essential for maintaining mitochondrial function and adult cardiomyocyte homeostasis.NEW & NOTEWORTHY Mitochondrial dysfunction constitutes an important aspect of heart failure etiopathogenesis and progression. However, the molecular mechanisms are still largely unknown. Growing lines of evidence indicate that Hippo-Tead pathway plays a role in cellular bioenergetics. This study reveals the novel role of Tead1, the downstream transcriptional effector of Hippo pathway, as a novel regulator of mitochondrial oxidative phosphorylation and in vivo cardiomyocyte energy metabolism, thus providing a potential therapeutic target for modulating mitochondrial function and enhancing cytoprotection of cardiomyocytes.


Subject(s)
DNA-Binding Proteins/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Transcription Factors/metabolism , Animals , Cell Respiration , Cells, Cultured , DNA-Binding Proteins/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Male , Mice , Mice, Inbred C57BL , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcriptome
10.
Sci Rep ; 9(1): 4585, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872796

ABSTRACT

Rev-erbα is a ligand-dependent nuclear receptor and a key repressor of the molecular clock transcription network. Accumulating evidence indicate that the circadian clock machinery governs diverse biological processes in skeletal muscle, including muscle growth, repair and mass maintenance. The physiological function of Rev-erbα in myogenic regulation remains largely unknown. Here we show that Rev-erbα exerts cell-autonomous inhibitory effects on proliferation and differentiation of myogenic precursor cells, and these actions concertedly inhibit muscle regeneration in vivo. Mechanistic studies reveal Rev-erbα direct transcriptional control of two major myogenic mechanisms, proliferative pathway and the Wnt signaling cascade. Consistent with this finding, primary myoblasts lacking Rev-erbα display significantly enhanced proliferative growth and myogenic progression. Furthermore, pharmacological activation of Rev-erbα activity attenuates, whereas its inhibition by an antagonist promotes these processes. Notably, upon muscle injury, the loss-of-function of Rev-erbα in vivo augmented satellite cell proliferative expansion and regenerative progression during regeneration. Collectively, our study identifies Rev-erbα as a novel inhibitory regulator of myogenic progenitor cell properties that suppresses postnatal myogenesis. Pharmacological interventions to dampen Rev-erbα activity may have potential utilities to enhance regenerative capacity in muscle diseases.


Subject(s)
CLOCK Proteins/metabolism , Gene Expression Regulation , Muscle Development/genetics , Orphan Nuclear Receptors/genetics , Animals , Biomarkers , CLOCK Proteins/genetics , Cell Differentiation/genetics , Cell Proliferation , Disease Susceptibility , Gene Expression Profiling , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1 , Regeneration/genetics , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Wnt Signaling Pathway
11.
PLoS One ; 14(2): e0212017, 2019.
Article in English | MEDLINE | ID: mdl-30811446

ABSTRACT

Adult heart size is determined predominantly by the cardiomyocyte number and size. The cardiomyocyte number is determined primarily in the embryonic and perinatal period, as adult cardiomyocyte proliferation is restricted in comparison to that seen during the perinatal period. Recent evidence has implicated the mammalian Hippo kinase pathway as being critical in cardiomyocyte proliferation. Though the transcription factor, Tead1, is the canonical downstream transcriptional factor of the hippo kinase pathway in cardiomyocytes, the specific role of Tead1 in cardiomyocyte proliferation in the perinatal period has not been determined. Here, we report the generation of a cardiomyocyte specific perinatal deletion of Tead1, using Myh6-Cre deletor mice (Tead1-cKO). Perinatal Tead1 deletion was lethal by postnatal day 9 in Tead1-cKO mice due to dilated cardiomyopathy. Tead1-deficient cardiomyocytes have significantly decreased proliferation during the immediate postnatal period, when proliferation rate is normally high. Deletion of Tead1 in HL-1 cardiac cell line confirmed that cell-autonomous Tead1 function is required for normal cardiomyocyte proliferation. This was secondary to significant decrease in levels of many proteins, in vivo, that normally promote cell cycle in cardiomyocytes. Taken together this demonstrates the non-redundant critical requirement for Tead1 in regulating cell cycle proteins and proliferation in cardiomyocytes in the perinatal heart.


Subject(s)
Cardiomyopathy, Dilated/mortality , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Myocytes, Cardiac/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Animals, Newborn , Cardiomyopathy, Dilated/genetics , Cell Proliferation , Cells, Cultured , Female , Gene Deletion , Genes, Lethal , Mice , Myocytes, Cardiac/metabolism , Organ Size , Pregnancy , Signal Transduction , TEA Domain Transcription Factors
12.
JCI Insight ; 2(17)2017 09 07.
Article in English | MEDLINE | ID: mdl-28878117

ABSTRACT

Heart disease remains the leading cause of death worldwide, highlighting a pressing need to identify novel regulators of cardiomyocyte (CM) function that could be therapeutically targeted. The mammalian Hippo/Tead pathway is critical in embryonic cardiac development and perinatal CM proliferation. However, the requirement of Tead1, the transcriptional effector of this pathway, in the adult heart is unknown. Here, we show that tamoxifen-inducible adult CM-specific Tead1 ablation led to lethal acute-onset dilated cardiomyopathy, associated with impairment in excitation-contraction coupling. Mechanistically, we demonstrate Tead1 is a cell-autonomous, direct transcriptional activator of SERCA2a and SR-associated protein phosphatase 1 regulatory subunit, Inhibitor-1 (I-1). Thus, Tead1 deletion led to a decrease in SERCA2a and I-1 transcripts and protein, with a consequent increase in PP1-activity, resulting in accumulation of dephosphorylated phospholamban (Pln) and decreased SERCA2a activity. Global transcriptomal analysis in Tead1-deleted hearts revealed significant changes in mitochondrial and sarcomere-related pathways. Additional studies demonstrated there was a trend for correlation between protein levels of TEAD1 and I-1, and phosphorylation of PLN, in human nonfailing and failing hearts. Furthermore, TEAD1 activity was required to maintain PLN phosphorylation and expression of SERCA2a and I-1 in human induced pluripotent stem cell-derived (iPS-derived) CMs. To our knowledge, taken together, this demonstrates a nonredundant, novel role of Tead1 in maintaining normal adult heart function.


Subject(s)
Cardiomyopathy, Dilated/metabolism , DNA-Binding Proteins/physiology , Myocytes, Cardiac/cytology , Transcription Factors/physiology , Animals , Calcium-Binding Proteins/metabolism , Cardiomyopathy, Dilated/chemically induced , Cardiomyopathy, Dilated/pathology , Cell Proliferation , DNA-Binding Proteins/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Knockout , Myocardium/enzymology , Myocardium/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism , Sarcoplasmic Reticulum/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , TEA Domain Transcription Factors , Tamoxifen/pharmacology , Transcription Factors/genetics
13.
Sci Rep ; 7(1): 979, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28428639

ABSTRACT

Orexigenic hormone ghrelin and anorexic hormone obestatin are encoded by the same preproghrelin gene. While it is known that ghrelin inhibits glucose-stimulated insulin secretion (GSIS), the effect of obestatin on GSIS is unclear. Ghrelin's effect is mediated by its receptor Growth Hormone Secretagogue Receptor (GHS-R), but the physiologically relevant receptor of obestatin remains debatable. Here we have investigated the effect of obestatin on GSIS in vitro, in vivo and ex vivo, and tested whether obestatin regulates insulin secretion through GHS-R. We found that under hyperglycemic condition, obestatin augments GSIS in rat insulinoma cells (INS-1) and in pancreatic islets from ghrelin -/- mice. Surprisingly, obestatin-induced GSIS was absent in ß-cells in which GHS-R was suppressed. Obestatin-induced insulin secretion was abolished in the circulation of Ghsr -/- mice, and in pancreatic islets isolated from Ghsr -/- mice. We also found that obestatin-induced GSIS was attenuated in islets isolated from ß-cell-specific Ghsr knockout MIP-Cre/ERT;Ghsrf/f mice. Our data collectively demonstrate that obestatin is a potent insulin secretagogue under hyperglycemic condition, and obestatin's effect on insulin secretion is mediated by GHS-R in pancreatic ß-cells. Our findings reveal an intriguing insight that obestatin and ghrelin have opposing effects on insulin secretion, and both are mediated through ghrelin receptor GHS-R.


Subject(s)
Ghrelin/genetics , Glucose/pharmacology , Insulin/metabolism , Receptors, Ghrelin/metabolism , Animals , Cells, Cultured , Gene Knockout Techniques , Ghrelin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Male , Mice , Rats
14.
Genom Data ; 9: 37-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27408807

ABSTRACT

Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR.

15.
Adipocyte ; 5(2): 243-50, 2016.
Article in English | MEDLINE | ID: mdl-27385482

ABSTRACT

The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation.

16.
J Am Heart Assoc ; 5(4): e002663, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27091181

ABSTRACT

BACKGROUND: Foam cells are central to two major pathogenic processes in atherogenesis: cholesterol buildup in arteries and inflammation. The main underlying cause of cholesterol deposition in arteries is hypercholesterolemia. This study aimed to assess, in vivo, whether elevated plasma cholesterol also alters the inflammatory balance of foam cells. METHODS AND RESULTS: Apolipoprotein E-deficient mice were fed regular mouse chow through the study or were switched to a Western-type diet (WD) 2 or 14 weeks before death. Consecutive sections of the aortic sinus were used for lesion quantification or to isolate RNA from foam cells by laser-capture microdissection (LCM) for microarray and quantitative polymerase chain reaction analyses. WD feeding for 2 or 14 weeks significantly increased plasma cholesterol, but the size of atherosclerotic lesions increased only in the 14-week WD group. Expression of more genes was affected in foam cells of mice under prolonged hypercholesterolemia than in mice fed WD for 2 weeks. However, most transcripts coding for inflammatory mediators remained unchanged in both WD groups. Among the main players in inflammatory or immune responses, chemokine (C-X-C motif) ligand 13 was induced in foam cells of mice under WD for 2 weeks. The interferon-inducible GTPases, guanylate-binding proteins (GBP)3 and GBP6, were induced in the 14-week WD group, and other GBP family members were moderately increased. CONCLUSIONS: Our results indicate that acceleration of atherosclerosis by hypercholesterolemia is not linked to global changes in the inflammatory balance of foam cells. However, induction of GBPs uncovers a novel family of immune modulators with a potential role in atherogenesis.


Subject(s)
Atherosclerosis/etiology , Diet, Western/adverse effects , Foam Cells/chemistry , GTP-Binding Proteins/analysis , Inflammation/physiopathology , Animals , Atherosclerosis/chemically induced , Female , Foam Cells/drug effects , Gene Expression Profiling , Gene Expression Regulation/drug effects , Laser Capture Microdissection , Lipids/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Sinus of Valsalva/chemistry
17.
Sci Rep ; 5: 11239, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26058812

ABSTRACT

Brown adipose tissue is a major thermogenic organ that plays a key role in maintenance of body temperature and whole-body energy homeostasis. Rev-erbα, a ligand-dependent nuclear receptor and transcription repressor of the molecular clock, has been implicated in the regulation of adipogenesis. However, whether Rev-erbα participates in brown fat formation is not known. Here we show that Rev-erbα is a key regulator of brown adipose tissue development by promoting brown adipogenesis. Genetic ablation of Rev-erbα in mice severely impairs embryonic and neonatal brown fat formation accompanied by loss of brown identity. This defect is due to a cell-autonomous function of Rev-erbα in brown adipocyte lineage commitment and terminal differentiation, as demonstrated by genetic loss- and gain-of-function studies in mesenchymal precursors and brown preadipocytes. Moreover, pharmacological activation of Rev-erbα activity promotes, whereas its inhibition suppresses brown adipocyte differentiation. Mechanistic investigations reveal that Rev-erbα represses key components of the TGF-ß cascade, an inhibitory pathway of brown fat development. Collectively, our findings delineate a novel role of Rev-erbα in driving brown adipocyte development, and provide experimental evidence that pharmacological interventions of Rev-erbα may offer new avenues for the treatment of obesity and related metabolic disorders.


Subject(s)
Adipose Tissue, Brown/growth & development , Gene Products, rev/physiology , Adipose Tissue, Brown/cytology , Animals , Cell Differentiation , Mice , Mice, Inbred C57BL
18.
J Cell Sci ; 128(9): 1835-47, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25749863

ABSTRACT

The molecular clock is intimately linked to metabolic regulation, and brown adipose tissue plays a key role in energy homeostasis. However, whether the cell-intrinsic clock machinery participates in brown adipocyte development is unknown. Here, we show that Bmal1 (also known as ARNTL), the essential clock transcription activator, inhibits brown adipogenesis to adversely affect brown fat formation and thermogenic capacity. Global ablation of Bmal1 in mice increases brown fat mass and cold tolerance, and adipocyte-selective inactivation of Bmal1 recapitulates these effects and demonstrates its cell-autonomous role in brown adipocyte formation. Further loss- and gain-of-function studies in mesenchymal precursors and committed brown progenitors reveal that Bmal1 inhibits brown adipocyte lineage commitment and terminal differentiation. Mechanistically, Bmal1 inhibits brown adipogenesis through direct transcriptional control of key components of the TGF-ß pathway together with reciprocally altered BMP signaling; activation of TGF-ß or blockade of BMP pathways suppresses enhanced differentiation in Bmal1-deficient brown adipocytes. Collectively, our study demonstrates a novel temporal regulatory mechanism in fine-tuning brown adipocyte lineage progression to affect brown fat formation and thermogenic regulation, which could be targeted therapeutically to combat obesity.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Biological Clocks , Bone Morphogenetic Proteins/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , ARNTL Transcription Factors/metabolism , Adipose Tissue, Brown , Animals , Biological Clocks/genetics , Cell Line , Cell Lineage , Circadian Rhythm/genetics , Gene Expression Regulation , Gene Silencing , Mice , Thermogenesis , Transcription, Genetic
19.
Mol Cell Biol ; 33(11): 2327-38, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23547261

ABSTRACT

Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in ß-cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in ß cells. To address this, we generated mice with ß-cell clock disruption by deleting Bmal1 in ß cells (ß-Bmal1(-/-)). ß-Bmal1(-/-) mice develop diabetes due to loss of glucose-stimulated insulin secretion (GSIS). This loss of GSIS is due to the accumulation of reactive oxygen species (ROS) and consequent mitochondrial uncoupling, as it is fully rescued by scavenging of the ROS or by inhibition of uncoupling protein 2. The expression of the master antioxidant regulatory factor Nrf2 (nuclear factor erythroid 2-related factor 2) and its targets, Sesn2, Prdx3, Gclc, and Gclm, was decreased in ß-Bmal1(-/-) islets, which may contribute to the observed increase in ROS accumulation. In addition, by chromatin immunoprecipitation experiments, we show that Nrf2 is a direct transcriptional target of Bmal1. Interestingly, simulation of shift work-induced circadian misalignment in mice recapitulates many of the defects seen in Bmal1-deficient islets. Thus, the cell-autonomous function of Bmal1 is required for normal ß-cell function by mitigating oxidative stress and serves to preserve ß-cell function in the face of circadian misalignment.


Subject(s)
ARNTL Transcription Factors/metabolism , Adaptation, Physiological/physiology , Circadian Rhythm/physiology , Insulin-Secreting Cells/physiology , Oxidative Stress/physiology , ARNTL Transcription Factors/genetics , Animals , Antioxidants/metabolism , Diabetes Mellitus, Experimental/genetics , Gene Expression Regulation , Glucose/metabolism , Hyperglycemia/genetics , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/pathology , Ion Channels/genetics , Ion Channels/metabolism , Male , Mice , Mice, Transgenic , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Uncoupling Protein 2
20.
PLoS One ; 8(3): e58655, 2013.
Article in English | MEDLINE | ID: mdl-23516528

ABSTRACT

Altered insulin secretion contributes to the pathogenesis of type 2 diabetes. This alteration is correlated with altered intracellular Ca(2+)-handling in pancreatic ß cells. Insulin secretion is triggered by elevation in cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) of ß cells. This elevation in [Ca(2+)]cyt leads to activation of Ca(2+)/calmodulin-dependent protein kinase II (CAMKII), which, in turn, controls multiple aspects of insulin secretion. CaMKII is known to phosphorylate ryanodine receptor 2 (RyR2), an intracellular Ca(2+)-release channel implicated in Ca(2+)-dependent steps of insulin secretion. Our data show that RyR2 is CaMKII phosphorylated in a pancreatic ß-cell line in a glucose-sensitive manner. However, it is not clear whether any change in CaMKII-mediated phosphorylation underlies abnormal RyR2 function in ß cells and whether such a change contributes to alterations in insulin secretion. Therefore, knock-in mice with a mutation in RyR2 that mimics its constitutive CaMKII phosphorylation, RyR2-S2814D, were studied. This mutation led to a gain-of-function defect in RyR2 indicated by increased basal RyR2-mediated Ca(2+) leak in islets of these mice. This chronic in vivo defect in RyR2 resulted in basal hyperinsulinemia. In addition, S2814D mice also developed glucose intolerance, impaired glucose-stimulated insulin secretion and lowered [Ca(2+)]cyt transients, which are hallmarks of pre-diabetes. The glucose-sensitive Ca(2+) pool in islets from S2814D mice was also reduced. These observations were supported by immunohistochemical analyses of islets in diabetic human and mouse pancreata that revealed significantly enhanced CaMKII phosphorylation of RyR2 in type 2 diabetes. Together, these studies implicate that the chronic gain-of-function defect in RyR2 due to CaMKII hyperphosphorylation is a novel mechanism that contributes to pathogenesis of type 2 diabetes.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Glucose Tolerance Test , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Adult , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Enzyme Activation/drug effects , Gene Knock-In Techniques , Glucose/pharmacology , Humans , Insulin Secretion , Insulin-Secreting Cells/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Mice , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...