Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 65(3): 889-99, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21442797

ABSTRACT

Imaging of tumor microvasculature has become an important tool for studying angiogenesis and monitoring antiangiogenic therapies. Ultrasmall paramagnetic iron oxide contrast agents for indirect imaging of vasculature offer a method for quantitative measurements of vascular biomarkers such as vessel size index, blood volume, and vessel density (Q). Here, this technique is validated with direct comparisons to ex vivo micro-computed tomography angiography and histologic vessel measurements, showing significant correlations between in vivo vascular MRI measurements and ex vivo structural vessel measurements. The sensitivity of the MRI vascular parameters is also demonstrated, in combination with a multispectral analysis technique for segmenting tumor tissue to restrict the analysis to viable tumor tissue and exclude regions of necrosis. It is shown that this viable tumor segmentation increases sensitivity for detection of significant effects on blood volume and Q by two antiangiogenic therapeutics [anti-vascular endothelial growth factor (anti-VEGF) and anti-neuropilin-1] on an HM7 colorectal tumor model. Anti-vascular endothelial growth factor reduced blood volume by 36±3% (p<0.0001) and Q by 52±3% (p<0.0001) at 48 h post-treatment; the effects of anti-neuropilin-1 were roughly half as strong with a reduction in blood volume of 18±6% (p<0.05) and a reduction in Q of 33±5% (p<0.05) at 48 h post-treatment.


Subject(s)
Colorectal Neoplasms/diagnostic imaging , Neovascularization, Pathologic/diagnostic imaging , Angiography , Animals , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Magnetic Resonance Imaging/methods , Mice , Sensitivity and Specificity , Tomography, X-Ray Computed , Tumor Burden/drug effects
2.
Magn Reson Med ; 63(6): 1637-47, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20512867

ABSTRACT

Imaging of tumor microvasculature has become an important tool for studying angiogenesis and monitoring antiangiogenic therapies. Ultrasmall paramagnetic iron oxide contrast agents for indirect imaging of vasculature offer a method for quantitative measurements of vascular biomarkers such as vessel size index, blood volume, and vessel density. Here, this technique is validated with direct comparisons to ex vivo micro-CT angiography and histologic vessel measurements, showing significant correlations between in vivo vascular MRI measurements and ex vivo structural vessel measurements. The sensitivity of the MRI vascular parameters is also demonstrated, in combination with a multispectral analysis technique for segmenting tumor tissue to restrict the analysis to viable tumor tissue and exclude regions of necrosis. It is shown that this viable tumor segmentation increases sensitivity for detection of significant effects on blood volume and vessel density by two antiangiogenic therapeutics (anti-VEGF and anti-neuropilin-1) on an HM7 colorectal tumor model. Anti-VEGF reduced blood volume by 36 +/- 3% (P < 0.0001) and vessel density by 52 +/- 3% (P < 0.0001) at 48 h posttreatment; the effects of anti-neuropilin-1 were roughly half as strong with a reduction in blood volume of 18 +/- 6% (P < 0.05) and a reduction in vessel density of 33 +/- 5% (P < 0.05) at 48 h posttreatment.


Subject(s)
Angiography , Colorectal Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Neovascularization, Pathologic/diagnostic imaging , Tomography, X-Ray Computed , Animals , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Magnetic Resonance Imaging/methods , Mice , Sensitivity and Specificity , Tumor Burden/drug effects
3.
Nat Med ; 13(9): 1070-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17767167

ABSTRACT

Apo2L/TRAIL stimulates cancer cell death through the proapoptotic receptors DR4 and DR5, but the determinants of tumor susceptibility to this ligand are not fully defined. mRNA expression of the peptidyl O-glycosyltransferase GALNT14 correlated with Apo2L/TRAIL sensitivity in pancreatic carcinoma, non-small-cell lung carcinoma and melanoma cell lines, and up to 30% of samples from various human malignancies showed GALNT14 overexpression. RNA interference of GALNT14 reduced cellular Apo2L/TRAIL sensitivity, whereas overexpression increased responsiveness. Biochemical analysis of DR5 identified several ectodomain O-(N-acetyl galactosamine-galactose-sialic acid) structures. Sequence comparison predicted conserved extracellular DR4 and DR5 O-glycosylation sites; progressive mutation of the DR5 sites attenuated apoptotic signaling. O-glycosylation promoted ligand-stimulated clustering of DR4 and DR5, which mediated recruitment and activation of the apoptosis-initiating protease caspase-8. These results uncover a new link between death-receptor O-glycosylation and apoptotic signaling, providing potential predictive biomarkers for Apo2L/TRAIL-based cancer therapy.


Subject(s)
Receptors, Death Domain/physiology , TNF-Related Apoptosis-Inducing Ligand/physiology , Amino Acid Sequence , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Cell Survival , Genetic Predisposition to Disease , Glycosylation , Humans , Lung Neoplasms , Melanoma , Mice , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Pancreatic Neoplasms , RNA, Messenger/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Transplantation, Heterologous
4.
Blood ; 110(12): 4037-46, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17724141

ABSTRACT

Recombinant human rhApo2L/TRAIL selectively stimulates apoptosis in various cancer cells through its receptors DR4 and DR5, and is currently in clinical trials. Preclinical studies have established antitumor activity of rhApo2L/TRAIL in models of epithelial cancers; however, efficacy in non-Hodgkin lymphoma (NHL) models is not well studied. Of 7 NHL cell lines tested in vitro, rhApo2L/TRAIL stimulated apoptosis in BJAB, Ramos RA1, and DoHH-2 cells. Rituximab, a CD20 antibody used to treat certain types of NHL, augmented rhApo2L/TRAIL-induced caspase activation in Ramos RA1 and DoHH2 but not BJAB or SC-1 cells, through modulation of intrinsic rather than extrinsic apoptosis signaling. In vivo, rhApo2L/TRAIL and rituximab cooperated to attenuate or reverse growth of tumor xenografts of all 4 of these cell lines. Depletion of natural killer (NK) cells or serum complement substantially reduced combined efficacy against Ramos RA1 tumors, suggesting involvement of antibody-dependent cell- and complement-mediated cytotoxicity. Both agents exhibited greater activity against disseminated than subcutaneous BJAB xenografts, and worked together to inhibit or abolish disseminated tumors and increase survival. Moreover, rhApo2L/TRAIL helped circumvent acquired rituximab resistance of a Ramos variant. These findings provide a strong rationale for clinical investigation of rhApo2L/TRAIL in combination with rituximab as a novel strategy for NHL therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Lymphoma, Non-Hodgkin/drug therapy , Recombinant Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Murine-Derived , Antibody Formation/drug effects , Antineoplastic Agents/agonists , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Complement System Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Humans , Killer Cells, Natural/metabolism , Lymphocyte Depletion , Lymphoma, Non-Hodgkin/metabolism , Mice , Mice, Inbred ICR , Mice, SCID , Receptors, TNF-Related Apoptosis-Inducing Ligand/antagonists & inhibitors , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Receptors, Tumor Necrosis Factor/metabolism , Recombinant Proteins/agonists , Recombinant Proteins/therapeutic use , Rituximab , TNF-Related Apoptosis-Inducing Ligand/agonists , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , Transplantation, Heterologous , Xenograft Model Antitumor Assays
5.
Cancer Cell ; 11(1): 53-67, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17222790

ABSTRACT

Neuropilin-1 (NRP1) guides the development of the nervous and vascular systems. Binding to either semaphorins or VEGF, NRP1 acts with plexins to regulate neuronal guidance, or with VEGFR2 to mediate vascular development. We have generated two monoclonal antibodies that bind to the Sema- and VEGF-binding domains of NRP1, respectively. Both antibodies reduce angiogenesis and vascular remodeling, while having little effect on other VEGFR2-mediated events. Importantly, anti-NRP1 antibodies have an additive effect with anti-VEGF therapy in reducing tumor growth. Vessels from tumors treated with anti-VEGF show a close association with pericytes, while tumors treated with both anti-NRP1 and anti-VEGF lack this organization. We propose that blocking NRP1 function inhibits vascular remodeling, rendering vessels more susceptible to anti-VEGF therapy.


Subject(s)
Neoplasms, Experimental/blood supply , Neovascularization, Pathologic/metabolism , Neuropilin-1/immunology , Vascular Endothelial Growth Factor A/immunology , Animals , Antibodies, Monoclonal , Cell Movement , Cells, Cultured , Endothelial Cells/metabolism , Female , Humans , Immunohistochemistry , Mice , Neurons/metabolism , Rats , Semaphorin-3A/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...