Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
J Clin Oncol ; 41(33): 5151-5162, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37607324

ABSTRACT

PURPOSE: To determine the genetic predisposition underlying pancreatic acinar cell carcinoma (PACC) and characterize its genomic features. METHODS: Both somatic and germline analyses were performed using an Food and Drug Administration-authorized matched tumor/normal sequencing assay on a clinical cohort of 28,780 patients with cancer, 49 of whom were diagnosed with PACC. For a subset of PACCs, whole-genome sequencing (WGS; n = 12) and RNA sequencing (n = 6) were performed. RESULTS: Eighteen of 49 (36.7%) PACCs harbored germline pathogenic variants in homologous recombination (HR) and DNA damage response (DDR) genes, including BRCA1 (n = 1), BRCA2 (n = 12), PALB2 (n = 2), ATM (n = 2), and CHEK2 (n = 1). Thirty-one PACCs displayed pure, and 18 PACCs harbored mixed acinar cell histology. Fifteen of 31 (48%) pure PACCs harbored a germline pathogenic variant affecting HR-/DDR-related genes. BRCA2 germline pathogenic variants (11 of 31, 35%) were significantly more frequent in pure PACCs than in pancreatic adenocarcinoma (86 of 2,739, 3.1%; P < .001), high-grade serous ovarian carcinoma (67 of 1,318, 5.1%; P < .001), prostate cancer (116 of 3,401, 3.4%; P < .001), and breast cancer (79 of 3,196, 2.5%; P < .001). Genomic features of HR deficiency (HRD) were detected in 7 of 12 PACCs undergoing WGS, including 100% (n = 6) of PACCs with germline HR-related pathogenic mutations and 1 of 6 PACCs lacking known pathogenic alterations in HR-related genes. Exploratory analyses revealed that in PACCs, the repertoire of somatic driver genetic alterations and the load of neoantigens with high binding affinity varied according to the presence of germline pathogenic alterations affecting HR-/DDR-related genes and/or HRD. CONCLUSION: In a large pan-cancer cohort, PACC was identified as the cancer type with the highest prevalence of both BRCA2 germline pathogenic variants and genomic features of HRD, suggesting that PACC should be considered as part of the spectrum of BRCA-related malignancies.


Subject(s)
Carcinoma, Acinar Cell , Pancreatic Neoplasms , Male , Humans , Carcinoma, Acinar Cell/genetics , Pancreatic Neoplasms/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Germ-Line Mutation , Genetic Predisposition to Disease , Homologous Recombination , Genomics , Pancreatic Neoplasms
3.
NPJ Precis Oncol ; 7(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593350

ABSTRACT

Traditional genetic testing for patients with gastrointestinal stromal tumors (GISTs) focus on those with syndromic features. To assess whether expanded genetic testing of GIST patients could identify hereditary cancer predisposition, we analyzed matched tumor-germline sequencing results from 103 patients with GISTs over a 6-year period. Germline pathogenic/likely pathogenic (P/LP) variants in GIST-associated genes (SDHA, SDHB, SDHC, NF1, KIT) were identified in 69% of patients with KIT/PDGFRA-wildtype GISTs, 63% of whom did not have any personal or family history of syndromic features. To evaluate the frequency of somatic versus germline variants identified in tumor-only sequencing of GISTs, we analyzed 499 de-identified tumor-normal pairs. P/LP variants in certain genes (e.g., BRCA1/2, SDHB) identified in tumor-only sequencing of GISTs were almost exclusively germline in origin. Our results provide guidance for genetic testing of GIST patients and indicate that germline testing should be offered to all patients with KIT/PDGFRA-wildtype GISTs regardless of their history of syndromic features.

5.
Eur J Hum Genet ; 29(7): 1103-1109, 2021 07.
Article in English | MEDLINE | ID: mdl-33619332

ABSTRACT

Hereditary Diffuse Gastric Cancer (HDGC) syndrome is associated with CDH1 germline likely pathogenic/pathogenic variants. Carriers of CDH1 germline likely pathogenic/pathogenic variants are predisposed to diffuse gastric cancer and lobular breast cancer. This study aims to classify the CDH1 c.[715G>A] missense variant identified in a diffuse gastric cancer prone family by performing splicing studies. RT-PCR and subsequent cloning experiments were performed to investigate whether this variant completely disrupts normal splicing. This variant preferentially abolishes normal splicing through activation of a cryptic 3' acceptor splice site within exon 6 of CDH1, presumably leading to a premature protein truncation within first extracellular domain repeat of E-cadherin protein. Our results contributed to evidence necessary to resolve pathogenicity classification of this variant, indicating that this variant is to be classified as pathogenic.


Subject(s)
Alleles , Amino Acid Substitution , Antigens, CD/genetics , Cadherins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Mutation , Biopsy , Computational Biology/methods , DNA Mutational Analysis , Databases, Genetic , Female , Humans , Immunohistochemistry , Male , Pedigree , RNA Splice Sites , RNA Splicing , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics
6.
JAMA Oncol ; 4(11): 1589-1593, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29872864

ABSTRACT

Importance: Although clonal hematopoiesis (CH) is well described in aging healthy populations, few studies have addressed the practical clinical implications of these alterations in solid-tumor sequencing. Objective: To identify and quantify CH-related mutations in patients with solid tumors using matched tumor-blood sequencing, and to establish the proportion that would be misattributed to the tumor based on tumor-only sequencing (unmatched analysis). Design, Setting, and Participants: Retrospective analysis of samples from 17 469 patients with solid cancers who underwent prospective clinical sequencing of DNA isolated from tumor tissue and matched peripheral blood using the MSK-IMPACT assay between January 2014 and August 2017. Main Outcomes and Measures: We identified the presence of CH-related mutations in each patient's blood leukocytes and quantified the fraction of DNA molecules harboring the mutation in the corresponding matched tumor sample. Results: The mean age of the 17 469 patients with cancer at sample collection was 59.2 years (range, 0.3-98.9 years); 53.6% were female. We identified 7608 CH-associated mutations in the blood of 4628 (26.5%) patients. A total of 1075 (14.1%) CH-associated mutations were also detectable in the matched tumor above established thresholds for calling somatic mutations. Overall, 912 (5.2%) patients would have had at least 1 CH-associated mutation erroneously called as tumor derived in the absence of matched blood sequencing. A total of 1061 (98.7%) of these mutations were absent from population scale databases of germline polymorphisms and therefore would have been challenging to filter informatically. Annotating variants with OncoKB classified 534 (49.7%) as oncogenic or likely oncogenic. Conclusions and Relevance: This study demonstrates how CH-derived mutations could lead to erroneous reporting and treatment recommendations when tumor-only sequencing is used.


Subject(s)
Hematopoiesis/genetics , Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Retrospective Studies , Young Adult
7.
BMC Med Genomics ; 10(1): 33, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526081

ABSTRACT

BACKGROUND: The growing number of Next Generation Sequencing (NGS) tests is transforming the routine clinical diagnosis of hereditary cancers. Identifying whether a cancer is the result of an underlying disease-causing mutation in a cancer predisposition gene is not only diagnostic for a cancer predisposition syndrome, but also has significant clinical implications in the clinical management of patients and their families. METHODS: Here, we evaluated the performance of MSK-IMPACT (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets) in detecting genetic alterations in 76 genes implicated in cancer predisposition syndromes. Output from hybridization-based capture was sequenced on an Illumina HiSeq 2500. A custom analysis pipeline was used to detect single nucleotide variants (SNVs), small insertions/deletions (indels) and copy number variants (CNVs). RESULTS: MSK-IMPACT detected all germline variants in a set of 233 unique patient DNA samples, previously confirmed by previous single gene testing. Reproducibility of variant calls was demonstrated using inter- and intra- run replicates. Moreover, in 16 samples, we identified additional pathogenic mutations other than those previously identified through a traditional gene-by-gene approach, including founder mutations in BRCA1, BRCA2, CHEK2 and APC, and truncating mutations in TP53, TSC2, ATM and VHL. CONCLUSIONS: This study highlights the importance of the NGS-based gene panel testing approach in comprehensively identifying germline variants contributing to cancer predisposition and simultaneous detection of somatic and germline alterations.


Subject(s)
DNA Mutational Analysis/methods , Genetic Predisposition to Disease , Germ-Line Mutation , Neoplasm Proteins/genetics , Neoplasms/metabolism , Adenomatous Polyposis Coli Protein/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Biomarkers, Tumor/genetics , Checkpoint Kinase 2/genetics , DNA Copy Number Variations , Humans , Neoplasms/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics
8.
PLoS One ; 12(2): e0171256, 2017.
Article in English | MEDLINE | ID: mdl-28231291

ABSTRACT

Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Cell Proliferation/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Osteosarcoma/drug therapy , Receptor, Metabotropic Glutamate 5/metabolism , Riluzole/pharmacology , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Cell Line, Tumor , Cell Movement/drug effects , Glutamic Acid/metabolism , Humans , Mice , Osteosarcoma/metabolism , Osteosarcoma/pathology , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Signal Transduction/drug effects
9.
PLoS One ; 11(11): e0165654, 2016.
Article in English | MEDLINE | ID: mdl-27880784

ABSTRACT

Disease-causing germline mutations in CDH1 cause Hereditary Diffuse Gastric Cancer (HDGC). For patients who meet the HDGC screening criteria, the identification and classification of the sequence variants found in CDH1 are critical for risk management of patients. In this report, we describe a germline CDH1 c.1679C>G (p.T560R) variant identified in a 50 year old man who was diagnosed with gastric cancer with a strong family history of gastric cancer (one living brother was diagnosed with gastric cancer at 63 and another brother died of gastric cancer at 45). cDNA analysis, involving fragment analysis and cloning, indicated that the p.T560R mutation created a novel 5' splice donor site, which led to a novel transcript with a 32 nucleotide deletion in exon 11. This abnormal transcript putatively produces a truncated CDH1 protein (E-cadherin) of 575 amino acids instead of 882. We also demonstrated that the variant completely abolishes normal splicing as the mutant allele does not generate any normal transcript. Furthermore, the CDH1 c.1679C>G (p.T560R) variant segregated with gastric cancer in all three family members affected with gastric cancer in this family. These results support the conclusion that CDH1 c.1679C>G (p.T560R) variant is a pathogenic mutation and contributes to HDGC through disruption of normal splicing.


Subject(s)
Cadherins/genetics , RNA Splicing , Alleles , Antigens, CD , Base Sequence , DNA Mutational Analysis , Exons , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Middle Aged , Pedigree , RNA Splice Sites , Sequence Deletion , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
10.
PLoS One ; 8(5): e64588, 2013.
Article in English | MEDLINE | ID: mdl-23724064

ABSTRACT

Glioblastomas exploit various molecular pathways to promote glutamate- dependent growth by activating the AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid) receptor, the group II metabotropic glutamate receptor, mGluR, and the epidermal growth factor receptor, EGFR. We hypothesized that targeting more than one of these pathways would be more effective in inhibiting glutamate-dependent growth. Using a model of U87 cell line, we show that blocking glutamate release by Riluzole inhibits cell proliferation. Glutamate-dependent growth is effectively inhibited by a combination of Iressa, an inhibitor of EGFR activation and LY341495, a group II mGluR inhibitor. Treatment of U87 cells with a combination of Iressa and LY341495 inhibits proliferation as indicated by Ki-67 staining, induces apoptosis and inhibits migration of U87 cells more effectively than the treatment by Iressa or LY341495 alone. These results demonstrate that a combinatorial therapy with Iressa and LY341495 is more effective due to synergistic effects of these drugs in inhibiting the growth of glioblastoma.


Subject(s)
Amino Acids/pharmacology , Cell Movement/drug effects , Quinazolines/pharmacology , Xanthenes/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Gefitinib , Glioblastoma/metabolism , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Humans , Riluzole/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...