Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892270

ABSTRACT

Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.


Subject(s)
Biological Products , Exosomes , Ferroptosis , MicroRNAs , Neoplasms , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals
2.
Environ Toxicol ; 39(6): 3612-3627, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491812

ABSTRACT

Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.


Subject(s)
Biological Products , MicroRNAs , Neoplasms , Protein Phosphatase 2 , MicroRNAs/metabolism , MicroRNAs/genetics , Protein Phosphatase 2/metabolism , Biological Products/pharmacology , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Animals
3.
Biomedicines ; 12(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398060

ABSTRACT

This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.

4.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399445

ABSTRACT

The anti-oral cancer effects of santamarine (SAMA), a Michelia compressa var. compressa-derived natural product, remain unclear. This study investigates the anticancer effects and acting mechanism of SAMA against oral cancer (OC-2 and HSC-3) in parallel with normal (Smulow-Glickman; S-G) cells. SAMA selectively inhibits oral cancer cell viability more than normal cells, reverted by the oxidative stress remover N-acetylcysteine (NAC). The evidence of oxidative stress generation, such as the induction of reactive oxygen species (ROS) and mitochondrial superoxide and the depletion of mitochondrial membrane potential and glutathione, further supports this ROS-dependent selective antiproliferation. SAMA arrests oral cancer cells at the G2/M phase. SAMA triggers apoptosis (annexin V) in oral cancer cells and activates caspases 3, 8, and 9. SAMA enhances two types of DNA damage in oral cancer cells, such as γH2AX and 8-hydroxy-2-deoxyguanosine. Moreover, all of these anticancer mechanisms of SAMA are more highly expressed in oral cancer cells than in normal cells in concentration and time course experiments. These above changes are attenuated by NAC, suggesting that SAMA exerts mechanisms of selective antiproliferation that depend on oxidative stress while maintaining minimal cytotoxicity to normal cells.

5.
Environ Toxicol ; 39(1): 299-313, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705323

ABSTRACT

Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.


Subject(s)
Apoptosis , Mouth Neoplasms , Humans , Cell Proliferation , Cell Line, Tumor , Mouth Neoplasms/metabolism
6.
Environ Toxicol ; 39(3): 1221-1234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37921086

ABSTRACT

Antioral cancer drugs need a greater antiproliferative impact on cancer than on normal cells. Demethoxymurrapanine (DEMU) inhibits proliferation in several cancer cells, but an in-depth investigation was necessary. This study evaluated the proliferation-modulating effects of DEMU, focusing on oral cancer and normal cells. DEMU (0, 2, 3, and 4 µg/mL) at 48 h treatments inhibited the proliferation of oral cancer cells (the cell viability (%) for Ca9-22 cells was 100.0 ± 2.2, 75.4 ± 5.6, 26.0 ± 3.8, and 15.4 ± 1.4, and for CAL 27 cells was 100.0 ± 9.4, 77.2 ± 5.9, 57.4 ± 10.7, and 27.1 ± 1.1) more strongly than that of normal cells (the cell viability (%) for S-G cells was 100.0 ± 6.6, 91.0 ± 4.6, 95.0 ± 2.6, and 95.8 ± 5.5), although this was blocked by the antioxidant N-acetylcysteine. The presence of oxidative stress was evidenced by the increase of reactive oxygen species and mitochondrial superoxide and the downregulation of the cellular antioxidant glutathione in oral cancer cells, but these changes were minor in normal cells. DEMU also caused greater induction of the subG1 phase, extrinsic and intrinsic apoptosis (annexin V and caspases 3, 8, and 9), and DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer than in normal cells. N-acetylcysteine attenuated all these DEMU-induced changes. Together, these data demonstrate the preferential antiproliferative function of DEMU in oral cancer cells, with the preferential induction of oxidative stress, apoptosis, and DNA damage in these cancer cells, and low cytotoxicity toward normal cells.


Subject(s)
Alkaloids , Mouth Neoplasms , Humans , Antioxidants/pharmacology , Acetylcysteine/pharmacology , Oxidative Stress , Reactive Oxygen Species , Mouth Neoplasms/drug therapy , Apoptosis , Cell Proliferation , Alkaloids/pharmacology , Alkaloids/therapeutic use , Indoles/pharmacology , Cell Line, Tumor , DNA Damage
7.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569824

ABSTRACT

Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.


Subject(s)
Exosomes , MicroRNAs , MicroRNAs/genetics , Exosomes/genetics
8.
Cancers (Basel) ; 15(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37190145

ABSTRACT

Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.

9.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835100

ABSTRACT

Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.


Subject(s)
Biological Products , MicroRNAs , Neoplasms , Humans , Biological Products/pharmacology , MicroRNAs/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics
10.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835397

ABSTRACT

Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.


Subject(s)
Endoplasmic Reticulum Stress , Mouth Neoplasms , Oxidative Stress , Humans , Apoptosis , Cell Line, Tumor , Endoribonucleases/metabolism , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism
11.
Cancers (Basel) ; 15(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36612314

ABSTRACT

Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.

12.
Antioxidants (Basel) ; 11(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421413

ABSTRACT

Physapruin A (PHA), a Physalis peruviana-derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells. The UVC-caused antiproliferation was enhanced by combination with PHA in oral cancer (Ca9-22 and CAL 27) but not normal cells (SG), as evidenced by ATP detection, compared with UVC or PHA alone. UVC/PHA showed a greater extent of subG1 increase, G2/M arrest, annexin-V-assessed apoptosis, caspase 3/7 activation, and reactive oxygen species (ROS) in the UVC or PHA treatment of oral cancer compared to normal cells. Moreover, the mitochondrial functions, such as mitochondrial superoxide bursts and mitochondrial membrane potential destruction, of oral cancer cells were also enhanced by UVC/PHA compared to UVC or PHA alone. These oxidative stresses triggered γH2AX and 8-hydroxyl-2'-deoxyguanosine-assessed DNA damage to a greater extent under UVC/PHA treatment than under UVC or PHA treatment alone. The ROS inhibitor N-acetylcysteine reversed all these UVC/PHA-promoted changes. In conclusion, UVC/PHA is a promising strategy for decreasing the proliferation of oral cancer cells but shows no inhibitory effect on normal cells.

13.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290795

ABSTRACT

A novel nitrated [6,6,6]tricycles-derived compound containing nitro, methoxy, and ispropyloxy groups, namely SK1, was developed in our previous report. However, the anticancer effects of SK1 were not assessed. Moreover, SK1 contains two nitro groups (NO2) and one nitrogen-oxygen (N-O) bond exhibiting the potential for oxidative stress generation, but this was not examined. The present study aimed to evaluate the antiproliferation effects and oxidative stress and its associated responses between oral cancer and normal cells. Based on the MTS assay, SK1 demonstrated more antiproliferation ability in oral cancer cells than normal cells, reversed by N-acetylcysteine. This suggests that SK1 causes antiproliferation effects preferentially in an oxidative stress-dependent manner. The oxidative stress-associated responses were further validated, showing higher ROS/MitoSOX burst, MMP, and GSH depletion in oral cancer cells than in normal cells. Meanwhile, SK1 caused oxidative stress-causing apoptosis, such as caspases 3/8/9, and DNA damages, such as γH2AX and 8-OHdG, to a greater extent in oral cancer cells than in normal cells. Siilar to cell viability, these oxidative stress responses were partially diminished by NAC, indicating that SK1 promoted oxidative stress-dependent responses. In conclusion, SK1 exerts oxidative stress, apoptosis, and DNA damage to a greater extent to oral cancer cells than in normal cells.

14.
Antioxidants (Basel) ; 11(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36139851

ABSTRACT

Antiproliferation effects of Clavularia-derived natural products against cancer cells have been reported on, but most studies have focused on identifying bioactive compounds, lacking a detailed investigation of the molecular mechanism. Crude extracts generally exhibit multiple targeting potentials for anticancer effects, but they have rarely been assessed for methanol extracts of Clavularia inflata (MECI). This investigation aims to evaluate the antiproliferation of MECI and to examine several potential mechanisms between oral cancer and normal cells. A 24 h MTS assay demonstrated that MECI decreased cell viability in several oral cancer cell lines more than in normal cells. N-acetylcysteine (NAC), an oxidative stress inhibitor, recovered these antiproliferation effects. Higher oxidative stress was stimulated by MECI in oral cancer cells than in normal cells, as proven by examining reactive oxygen species and mitochondrial superoxide. This preferential induction of oxidative stress was partly explained by downregulating more cellular antioxidants, such as glutathione, in oral cancer cells than in normal cells. Consequently, the MECI-generated high oxidative stress in oral cancer cells was preferred to trigger more subG1 population, apoptosis expression (annexin V and caspase activation), and DNA damage, reverted by NAC. In conclusion, MECI is a potent marine natural product showing preferential antiproliferation against oral cancer cells.

15.
Antioxidants (Basel) ; 11(9)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36139871

ABSTRACT

Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S-G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.

16.
Antioxidants (Basel) ; 11(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139919

ABSTRACT

Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.

17.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012104

ABSTRACT

The selective antiproliferation to oral cancer cells of Physalis peruviana-derived physapruin A (PHA) is rarely reported. Either drug-induced apoptosis and DNA damage or DNA repair suppression may effectively inhibit cancer cell proliferation. This study examined the selective antiproliferation ability of PHA and explored detailed mechanisms of apoptosis, DNA damage, and repair. During an ATP assay, PHA provided high cytotoxicity to two oral cancer cell lines (CAL 27 and Ca9-22) but no cytotoxicity to two non-malignant oral cells (HGF-1 and SG). This selective antiproliferation of PHA was associated with the selective generation of reactive oxygen species (ROS) in oral cancer cells rather than in non-malignant oral cells, as detected by flow cytometry. Moreover, PHA induced other oxidative stresses in oral cancer cells, such as mitochondrial superoxide generation and mitochondrial membrane potential depletion. PHA also demonstrated selective apoptosis in oral cancer cells rather than non-malignant cells in annexin V/7-aminoactinmycin D and caspase 3/7 activity assays. In flow cytometry and immunofluorescence assays, PHA induced γH2AX expressions and increased the γH2AX foci number of DNA damages in oral cancer cells. In contrast, the mRNA expressions for DNA repair signaling, including homologous recombination (HR) and non-homologous end joining (NHEJ)-associated genes, were inhibited by PHA in oral cancer cells. Moreover, the PHA-induced changes were alleviated by the oxidative stress inhibitor N-acetylcysteine. Therefore, PHA generates selective antiproliferation, oxidative stress, and apoptosis associated with DNA damage induction and DNA repair suppression in oral cancer cells.


Subject(s)
DNA Damage , Mouth Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , DNA Repair , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Reactive Oxygen Species/metabolism
18.
Antioxidants (Basel) ; 11(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35624775

ABSTRACT

The critical factors for regulating cancer metabolism are oxidative stress and phosphoinositide-3-kinase/AKT serine-threonine kinase/mechanistic target of the rapamycin kinase (PI3K/AKT/mTOR). However, the metabolic impacts of oxidative stress and PI3K/AKT/mTOR on individual mechanisms such as glycolysis (Warburg effect), pentose phosphate pathway (PPP), fatty acid synthesis, tricarboxylic acid cycle (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS) are complicated. Therefore, this review summarizes the individual and interacting functions of oxidative stress and PI3K/AKT/mTOR on metabolism. Moreover, natural products providing oxidative stress and PI3K/AKT/mTOR modulating effects have anticancer potential. Using the example of brown algae-derived fucoidan, the roles of oxidative stress and PI3K/AKT/mTOR were summarized, although their potential functions within diverse metabolisms were rarely investigated. We propose a potential application that fucoidan may regulate oxidative stress and PI3K/AKT/mTOR signaling to modulate their associated metabolic regulations. This review sheds light on understanding the impacts of oxidative stress and PI3K/AKT/mTOR on metabolism and the future direction of metabolism-based cancer therapy of fucoidan.

19.
Antioxidants (Basel) ; 11(5)2022 May 08.
Article in English | MEDLINE | ID: mdl-35624790

ABSTRACT

SK2, a nitrated [6,6,6]tricycle derivative with an n-butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 µM/10 µg/mL) provided more antiproliferation than cisplatin or SK2 alone. Cisplatin/SK2 triggered also more apoptosis inductions in terms of subG1 accumulation, annexin V, pancaspase, and caspase 3/8/9 measurements. Moreover, cisplatin/SK2 provided more oxidative stress and DNA damage in oral cancer cells than independent treatments. Oxidative stress inhibitors rescued the cisplatin/SK2-induced antiproliferation and oxidative stress generation. Moreover, cisplatin/SK2 induced more antiproliferation, apoptosis, oxidative stress, and DNA damage in oral cancer cells than in normal oral cells (S-G). In conclusion, low-dose cisplatin/SK2 combined treatment promoted selective and synergistic antiproliferation in oral cancer cells depending on oxidative-stress-associated responses.

20.
Biomedicines ; 10(5)2022 May 22.
Article in English | MEDLINE | ID: mdl-35625933

ABSTRACT

Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative (SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment (UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment (20 J/m2 UVC or 10 µg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively. In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2 to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2'-deoxyguanosine in oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antiproliferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...