Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-32669265

ABSTRACT

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Motifs , Animals , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrrolidines/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2 , Sulfonic Acids , Thermodynamics , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
2.
J Med Chem ; 62(24): 11135-11150, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31721578

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Stromal Tumors/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Pyrimidines/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis , Cell Proliferation , Female , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/enzymology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/enzymology , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred ICR , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Phosphorylation , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-kit/genetics , Pyrimidines/chemistry , Rats, Sprague-Dawley , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/genetics
3.
Oncotarget ; 7(52): 86239-86256, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27863392

ABSTRACT

The design and synthesis of a quinazoline-based, multi-kinase inhibitor for the treatment of acute myeloid leukemia (AML) and other malignancies is reported. Based on the previously reported furanopyrimidine 3, quinazoline core containing lead 4 was synthesized and found to impart dual FLT3/AURKA inhibition (IC50 = 127/5 nM), as well as improved physicochemical properties. A detailed structure-activity relationship study of the lead 4 allowed FLT3 and AURKA inhibition to be finely tuned, resulting in AURKA selective (5 and 7; 100-fold selective over FLT3), FLT3 selective (13; 30-fold selective over AURKA) and dual FLT3/AURKA selective (BPR1K871; IC50 = 19/22 nM) agents. BPR1K871 showed potent anti-proliferative activities in MOLM-13 and MV4-11 AML cells (EC50 ~ 5 nM). Moreover, kinase profiling and cell-line profiling revealed BPR1K871 to be a potential multi-kinase inhibitor. Functional studies using western blot and DNA content analysis in MV4-11 and HCT-116 cell lines revealed FLT3 and AURKA/B target modulation inside the cells. In vivo efficacy in AML xenograft models (MOLM-13 and MV4-11), as well as in solid tumor models (COLO205 and Mia-PaCa2), led to the selection of BPR1K871 as a preclinical development candidate for anti-cancer therapy. Further detailed studies could help to investigate the full potential of BPR1K871 as a multi-kinase inhibitor.


Subject(s)
Antineoplastic Agents/chemical synthesis , Aurora Kinase A/antagonists & inhibitors , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Male , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
Eur J Med Chem ; 100: 151-61, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26081023

ABSTRACT

Numerous FLT3 inhibitors have been explored as a viable therapy for the treatment of acute myeloid leukemia (AML). However, clinical data have been underwhelming due to incomplete inhibition of FLT3 or the emergence of resistant mutations treated with these older agents. We previously developed a series of 3-phenyl-1H-5-pyrazolylamine derivatives as highly potent and selective FLT3 inhibitors with good in vivo efficacy using an intravenous (IV) route. However, the poor bioavailability of these pyrazole compounds limits the development of these promising antileukemic compounds for clinical use. Herein, we describe a novel class of 5-phenyl-thiazol-2-ylamine compounds that are multi-targeted FLT3 inhibitors. From this class of compounds, compound 7h was very potent against AML cell lines and exhibited excellent oral efficacy in AML xenograft models. In addition, further studies demonstrated that compound 7h exhibited potent in vitro and in vivo activities against clinically relevant AC220 (3)-resistant kinase domain mutants of FLT3-ITD.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms, Experimental/drug therapy , Point Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred ICR , Mice, Nude , Molecular Structure , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
5.
ChemMedChem ; 9(5): 953-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24665000

ABSTRACT

Computer-guided drug design is a powerful tool for drug discovery. Herein we disclose the use of this approach for the discovery of dual FMS-like receptor tyrosine kinase-3 (FLT3)-Aurora A inhibitors against cancer. An Aurora hit compound was selected as a starting point, from which 288 virtual molecules were screened. Subsequently, some of these were synthesized and evaluated for their capacity to inhibit FLT3 and Aurora kinase A. To further enhance FLT3 inhibition, structure-activity relationship studies of the lead compound were conducted through a simplification strategy and bioisosteric replacement, followed by the use of computer-guided drug design to prioritize molecules bearing a variety of different terminal groups in terms of favorable binding energy. Selected compounds were then synthesized, and their bioactivity was evaluated. Of these, one novel inhibitor was found to exhibit excellent inhibition of FLT3 and Aurora kinase A and exert a dramatic antiproliferative effect on MOLM-13 and MV4-11 cells, with an IC50 value of 7 nM. Accordingly, it is considered a highly promising candidate for further development.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Computer-Aided Design , Drug Design , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/metabolism
6.
PLoS One ; 9(1): e83160, 2014.
Article in English | MEDLINE | ID: mdl-24416160

ABSTRACT

Overexpression or/and activating mutation of FLT3 kinase play a major driving role in the pathogenesis of acute myeloid leukemia (AML). Hence, pharmacologic inhibitors of FLT3 are of therapeutic potential for AML treatment. In this study, BPR1J-340 was identified as a novel potent FLT3 inhibitor by biochemical kinase activity (IC50 approximately 25 nM) and cellular proliferation (GC50 approximately 5 nM) assays. BPR1J-340 inhibited the phosphorylation of FLT3 and STAT5 and triggered apoptosis in FLT3-ITD(+) AML cells. The pharmacokinetic parameters of BPR1J-340 in rats were determined. BPR1J-340 also demonstrated pronounced tumor growth inhibition and regression in FLT3-ITD(+) AML murine xenograft models. The combination treatment of the HDAC inhibitor vorinostat (SAHA) with BPR1J-340 synergistically induced apoptosis via Mcl-1 down-regulation in MOLM-13 AML cells, indicating that the combination of selective FLT3 kinase inhibitors and HDAC inhibitors could exhibit clinical benefit in AML therapy. Our results suggest that BPR1J-340 may be further developed in the preclinical and clinical studies as therapeutics in AML treatments.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/therapeutic use , Urea/analogs & derivatives , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Rats , Signal Transduction/drug effects , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic use , Vorinostat , fms-Like Tyrosine Kinase 3/metabolism
7.
Bioorg Med Chem ; 21(11): 2856-67, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23618709

ABSTRACT

Preclinical investigations and early clinical trials suggest that FLT3 inhibitors are a viable therapy for acute myeloid leukemia. However, early clinical data have been underwhelming due to incomplete inhibition of FLT3. We have developed 3-phenyl-1H-5-pyrazolylamine as an efficient template for kinase inhibitors. Structure-activity relationships led to the discovery of sulfonamide, carbamate and urea series of FLT3 inhibitors. Previous studies showed that the sulfonamide 4 and carbamate 5 series were potent and selective FLT3 inhibitors with good in vivo efficacy. Herein, we describe the urea series, which we found to be potent inhibitors of FLT3 and VEGFR2. Some inhibited growth of FLT3-mutated MOLM-13 cells more strongly than the FLT3 inhibitors sorafenib (2) and ABT-869 (3). In preliminary in vivo toxicity studies of the four most active compounds, 10f was found to be the least toxic. A further in vivo efficacy study demonstrated that 10f achieved complete tumor regression in a higher proportion of MOLM-13 xenograft mice than 4 and 5 (70% vs 10% and 40%). These results show that compound 10f possesses improved pharmacologic and selectivity profiles and could be more effective than previously disclosed FLT3 inhibitors in the treatment of acute myeloid leukemia.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzamides/chemical synthesis , Benzamides/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Urea/analogs & derivatives , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzamides/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Humans , Inhibitory Concentration 50 , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Mice , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Sensitivity and Specificity , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/chemistry
8.
Anticancer Res ; 32(1): 147-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22213300

ABSTRACT

A high-throughput 32D(L858R/T790M) cell-based assay to identify inhibitors of the L858R/T790M mutant epidermal growth factor receptor (EGFR) pathway was established. After screening, ten hits from among 60,000 compounds in our in-house compound library were initially identified. In the secondary assays, one hit, 1-[2-(decyloxy)-2-oxoethyl]-3-methyl-2-[(4-methylphenoxy) methyl]-1H-benzimidazol-3-ium, was confirmed to directly inhibit the kinase activity of recombinant L858R/T790M EGFR and the phosphorylation of EGFR-L858R/T790M in gefitinib-resistant H1975 cells. Thus, this high-throughput assay system may be useful for identifying novel inhibitors which suppress mutant EGFR-T790M signalling and for overcoming T790M-mediated acquired resistance for future anticancer drug discovery.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Mutation/drug effects , Quinazolines/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gefitinib , High-Throughput Screening Assays , Humans , Lung Neoplasms/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
9.
Biochem Pharmacol ; 81(11): 1263-70, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21406185

ABSTRACT

Epidermal growth factor receptor (EGFR) is a proven therapeutic target to treat a small subset of non small cell lung cancer (NSCLC) harboring activating mutations within the EGFR gene. However, many NSCLC patients are not sensitive to EGFR inhibitors, suggesting that other factors are implicated in survival of NSCLC cells. Signal transducers and activators of transcription 3 (Stat3) function as transcription factor to mediate cell survival and differentiation and the dysregulation of Stat3 has been discovered in a number of cancers. In this study, we found that a small molecule, reactivation of p53 and induction of tumor cell apoptosis (RITA), showed anti-cancer activity against gefitinib-resistant H1650 cells through a p53-independent pathway. Stat3 suppression by RITA attracted our attention to investigate the role of Stat3 in sustaining survival of H1650 cells. Pharmacological and genetic approaches were employed to down-regulate Stat3 in H1650 cells. WP1066, a known Stat3 inhibitor, was shown to exhibit inhibitory effect on the growth of H1650 cells. Meanwhile, apoptosis activation by siRNA-mediated down-regulation of Stat3 in H1650 cells provides more direct evidence for the involvement of Stat3 in viability maintenance of H1650 cells. Moreover, as a novel identified Stat3 inhibitor, RITA increased doxorubicin sensitivity of H1650 cells in vitro and in vivo, suggesting that doxorubicin accompanied with Stat3 inhibitors may be considered as an alternative strategy to treat NSCLC patients who have inherent resistance to doxorubicin. Overall, our observations reveal that targeting Stat3 may be an effective treatment for certain NSCLC cells with oncogenic addition to Stat3.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Quinazolines/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Flow Cytometry , Gefitinib , Humans , Lung Neoplasms/metabolism , Pyridines/pharmacology , RNA Interference , STAT3 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Tyrphostins/pharmacology
10.
J Antimicrob Chemother ; 65(4): 676-83, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20089540

ABSTRACT

OBJECTIVES: Enterovirus 71 (EV71) causes serious diseases in humans. The aim of this study was to examine the effects of aurintricarboxylic acid (ATA) on EV71 replication and to explore the underlying mechanism. METHODS: To measure the activity of ATA in inhibiting the cytopathic effect (CPE) of EV71, a cell-based neutralization (inhibition of virus-induced CPE) assay was performed. The effect of ATA was further confirmed using plaque reduction and viral yield reduction assays. A time of addition assay was performed to identify the mechanisms of ATA's anti-EV71 activity. We examined the effects of ATA on the following key steps involved in virus replication: (i) translation of the internal ribosomal entry site (IRES)-mediated viral polyprotein; (ii) the proteolytic activity of viral proteases 2A and/or 3C; and (iii) the viral 3D RNA-dependent RNA polymerase (RdRp) activity. RESULTS: In this study, ATA was found to be a potent inhibitor of the replication of EV71. In the antiviral neutralization assay, ATA exhibited inhibitory activity against EV71 (TW/4643/98) and EV71 (TW/2231/98). Plaque assay further demonstrated that ATA inhibited EV71 replication with an EC(50) (effective concentration at which 50% of plaques were removed) of 2.9 microM. Studies on the mechanism of action revealed that ATA targets the early stage of the viral life cycle after viral entry. ATA was able to inhibit the RdRp activity of EV71, while neither the IRES-mediated translation of viral polyprotein nor the viral 3C protease activity was affected. CONCLUSIONS: Overall, the findings in this study suggest that ATA is able to effectively inhibit EV71 replication through interfering with the viral 3D polymerase.


Subject(s)
Antiviral Agents/pharmacology , Aurintricarboxylic Acid/pharmacology , Enterovirus A, Human/drug effects , Enzyme Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Humans , Vero Cells , Viral Plaque Assay
11.
Anal Biochem ; 375(1): 115-23, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18190777

ABSTRACT

Although several cell-based reporter assays have been developed for screening of viral protease inhibitors, most of these assays have a significant limitation in that numerous false positives can be generated for the compounds that are interfering with reporter gene detection due to the cellular viability. To improve, we developed a mammalian cell-based assay based on the reverse two-hybrid system to monitor the proteolytic activity of human enterovirus 71 (EV71) 3C protease and to validate the cytotoxicity of compounds at the same time. In this system, the GAL4 DNA binding domain (M3) and transactivation domain (VP16) were fused, in-frame, with 3C or 3C(mut). The 3C(mut) was an inactivated protease with mutations at the predicted catalytic triad. The reporter plasmid contains a secreted alkaline phosphatase (SEAP) gene under the control of GAL4 activating sequences. We demonstrated that M3-3C-VP16 failed to turn on the expression of SEAP due to the separation of M3 and the VP16 domains by self-cleavage of 3C. In contrast, SEAP expression was induced by the M3-3C(mut)-VP16 fusion protein or the M3-3C-VP16 in cells treated with AG7088, a potent inhibitor of human rhinoviruses (HRVs) 3C protease. Potentially, this protease detection system should greatly facilitate anti-EV71 drug discovery through a high-throughput screening.


Subject(s)
Endopeptidases/metabolism , Enterovirus A, Human/enzymology , Two-Hybrid System Techniques , Viral Proteins/metabolism , Animals , COS Cells , Cell-Free System , Chlorocebus aethiops , Genes, Reporter , Herpes Simplex Virus Protein Vmw65/metabolism , Mutant Proteins/metabolism , Protease Inhibitors/pharmacology , Recombinant Fusion Proteins/metabolism , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...