Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Toxicol Mech Methods ; : 1-12, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937256

ABSTRACT

Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.

3.
Radiol Case Rep ; 19(6): 2448-2451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38585401

ABSTRACT

Deep intertrabecular recesses and overly pronounced trabeculations in one ventricle are the hallmarks of noncompaction cardiomyopathy (NCCM), a rare congenital cardiomyopathy but very rarely right ventricle (RV), or both ventricles may be involved. We reported a 5-day-old preterm newborn with signs of congestive heart failure that the transthoracic echocardiography (TTE) revealed deep intertrabecular recesses perfused from the left ventricle (LV) and RV cavity, as well as significantly increased wall thickness of the right ventricles and hypertrabeculations in the apical and midventricular segments.

4.
Toxicol Lett ; 395: 50-59, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552811

ABSTRACT

A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25 mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for careful usage and dose adjustment.


Subject(s)
Cholestasis , Cyclosporine , Rats , Animals , Cyclosporine/toxicity , Cyclosporine/metabolism , Liver/metabolism , Kidney/metabolism , Cholestasis/chemically induced , Metabolome
5.
J Pharm Anal ; 14(1): 16-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352944

ABSTRACT

The spread of tuberculosis (TB), especially multidrug-resistant TB and extensively drug-resistant TB, has strongly motivated the research and development of new anti-TB drugs. New strategies to facilitate drug combinations, including pharmacokinetics-guided dose optimization and toxicology studies of first- and second-line anti-TB drugs have also been introduced and recommended. Liquid chromatography-mass spectrometry (LC-MS) has arguably become the gold standard in the analysis of both endo- and exo-genous compounds. This technique has been applied successfully not only for therapeutic drug monitoring (TDM) but also for pharmacometabolomics analysis. TDM improves the effectiveness of treatment, reduces adverse drug reactions, and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window. Based on TDM, the dose would be optimized individually to achieve favorable outcomes. Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs, aiding in the discovery of potential biomarkers for TB diagnostics, treatment monitoring, and outcome evaluation. This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades. Besides, we discussed the advantages and disadvantages of this technique in practical use. The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted. Lastly, we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies (pharmacometrics, drug and vaccine developments, machine learning/artificial intelligence, among others) to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167064, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342417

ABSTRACT

Tracking alterations in polar metabolite and lipid levels during anti-tuberculosis (TB) interventions is an emerging biomarker discovery and validation approach due to its sensitivity in capturing changes and reflecting on the host status. Here, we employed deep plasma metabolic phenotyping to explore the TB patient metabolome during three phases of treatment: at baseline, during intensive phase treatment, and upon treatment completion. Differential metabolites (DMs) in each period were determined, and the pathway-level biological alterations were explored by untargeted metabolomics-guided functional interpretations that bypassed identification. We identified 41 DMs and 39 pathways that changed during intensive phase completion. Notably, levels of certain amino acids including histidine, bile acids, and metabolites of purine metabolism were dramatically increased. The altered pathways included those involved in the metabolism of amino acids, glycerophospholipids, and purine. At the end of treatment, 44 DMs were discovered. The levels of glutamine, bile acids, and lysophosphatidylinositol significantly increased compared to baseline; the levels of carboxylates and hypotaurine declined. In addition, 37 pathways principally associated with the metabolism of amino acids, carbohydrates, and glycan altered at treatment completion. The potential of each DM for diagnosing TB was examined using a cohort consisting of TB patients, those with latent infections, and controls. Logistic regression revealed four biomarkers (taurine, methionine, glutamine, and acetyl-carnitine) that exhibited excellent performance in differential diagnosis. In conclusion, we identified metabolites that could serve as useful metabolic signatures for TB management and elucidated underlying biological processes affected by the crosstalk between host and TB pathogen during treatment.


Subject(s)
Glutamine , Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Amino Acids , Amines , Bile Acids and Salts , Purines
7.
Poult Sci ; 103(4): 103485, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335668

ABSTRACT

Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.


Subject(s)
Anti-Infective Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Humans , Chickens/genetics , Thailand/epidemiology , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Tylosin , Drug Resistance, Bacterial/genetics , Campylobacter/genetics , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing/veterinary , Microbial Sensitivity Tests/veterinary
8.
Front Immunol ; 14: 1210372, 2023.
Article in English | MEDLINE | ID: mdl-38022579

ABSTRACT

Background: The optimal diagnosis and treatment of tuberculosis (TB) are challenging due to underdiagnosis and inadequate treatment monitoring. Lipid-related genes are crucial components of the host immune response in TB. However, their dynamic expression and potential usefulness for monitoring response to anti-TB treatment are unclear. Methodology: In the present study, we used a targeted, knowledge-based approach to investigate the expression of lipid-related genes during anti-TB treatment and their potential use as biomarkers of treatment response. Results and discussion: The expression levels of 10 genes (ARPC5, ACSL4, PLD4, LIPA, CHMP2B, RAB5A, GABARAPL2, PLA2G4A, MBOAT2, and MBOAT1) were significantly altered during standard anti-TB treatment. We evaluated the potential usefulness of this 10-lipid-gene signature for TB diagnosis and treatment monitoring in various clinical scenarios across multiple populations. We also compared this signature with other transcriptomic signatures. The 10-lipid-gene signature could distinguish patients with TB from those with latent tuberculosis infection and non-TB controls (area under the receiver operating characteristic curve > 0.7 for most cases); it could also be useful for monitoring response to anti-TB treatment. Although the performance of the new signature was not better than that of previous signatures (i.e., RISK6, Sambarey10, Long10), our results suggest the usefulness of metabolism-centric biomarkers. Conclusions: Lipid-related genes play significant roles in TB pathophysiology and host immune responses. Furthermore, transcriptomic signatures related to the immune response and lipid-related gene may be useful for TB diagnosis and treatment monitoring.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/genetics , Biomarkers/metabolism , Immunity , Lipids/therapeutic use , Acetyltransferases , Membrane Proteins
9.
Mater Sociomed ; 35(3): 222-227, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37795165

ABSTRACT

Background: Axial spondyloarthritis (axSpA) is a potentially disabling inflammatory arthritis of the spine, usually presenting as chronic back pain typically before the age of 45 years. It is often associated with one or more articular features, including synovitis, enthesitis, and dactylitis. It may also be associated with several non-articular features; these include uveitis, psoriasis, and inflammatory bowel diseases1. Objective: The aim of this article is to describe the status of using biological drugs and some related factors in treating ankylosing spondylitis in Vietnam. Methods: A joint prospective and retrospective cross-sectional descriptive study was conducted on 161 ankylosing spondylitis patients treated with biological drugs at the Centre for Rheumatology between January 2018 and July 2021. Data were collected at the first dose and after 3, 6, 12, 24, and 36 months, including general characteristics, clinical and para-clinical features, drug use status, and related factors. Results: Of the 161 patients, 86.3% were male, with a mean age of 31.1 ± 11.6 years and a mean disease duration of 7.6 ± 6.6 years. Most patients were started on biologics at stage II (46.6%) or III (28.6%). Moreover, 68.9% had active disease based on the Bath Ankylosing Spondylitis Disease Activity Index. The most commonly prescribed first-line therapy was anti-tumor necrosis factor (69.6%), with infliximab the most frequently prescribed drug (44.7%). The rate of biological drug treatment decreased gradually from 100% at the start to 77% after one year and 39.1% after three years. Moreover, 74% of patients changed drugs due to non-response, and 50% discontinued treatment for economic reasons. Age was associated with treatment adherence, and drug change rates were higher in female patients and patients with active disease. Age was significantly associated with drug discontinuation (p < 0.05). Conclusion: Infliximab was the most commonly prescribed first-line drug. The rate of biological therapy gradually decreased after three years. Most patients changed drugs due to non-response, and many discontinued the drugs for economic reasons. Among the individual and clinical factors, age was associated with treatment adherence.

10.
Viruses ; 15(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37766303

ABSTRACT

Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.


Subject(s)
Chiroptera , Coronavirus Infections , Coronavirus , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Coronavirus/genetics , Vietnam/epidemiology , Phylogeny , Genotype , Phenotype , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Pandemics
11.
JAC Antimicrob Resist ; 5(4): dlad090, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37484028

ABSTRACT

Objectives: We investigated longitudinally Vietnamese small-scale chicken flocks in order to characterize changes in antimicrobial resistance gene (ARG) content over their life cycle, and the impact of antimicrobial use (AMU) on an intervention consisting of veterinary advice provision. Methods: AMU data and faecal samples were collected from 83 flocks (25 farms) at day-old, mid- and late-production (∼4 month cycle). Using high-throughput real-time PCR, samples were investigated for 94 ARGs. ARG copies were related to 16S rRNA and ng of DNA (ngDNA). Impact of AMU and ARGs in day-olds was investigated by mixed-effects models. Results: Flocks received a mean (standard error, SE) animal daily dose (ADD) of 736.7 (83.0) and 52.1 (9.9) kg in early and late production, respectively. Overall, ARGs/16S rRNA increased from day-old (mean 1.47; SE 0.10) to mid-production (1.61; SE 0.16), further decreasing in end-production (1.60; SE 0.1) (all P > 0.05). In mid-production, ARGs/16S rRNA increased for aminoglycosides, phenicols, sulphonamides and tetracyclines, decreasing for polymyxins ß-lactams and genes that confer resistance to mutiple classes (multi-drug resistance) (MDR). At end-production, aminoglycoside resistance decreased and polymyxin and quinolone resistance increased (all P < 0.05). Results in relation to ngDNA gave contradictory results. Neither AMU nor ARGs in day-olds had an impact on subsequent ARG abundance. The intervention resulted in 74.2% AMU reduction; its impact on ARGs depended on whether ARGs/ngDNA (+14.8%) or ARGs/16S rRNA metrics (-10.7%) (P > 0.05) were computed. Conclusions: The flocks' environment (contaminated water, feed and residual contamination) is likely to play a more important role in transmission of ARGs to flocks than previously thought. Results highlight intriguing differences in the quantification of ARGs depending on the metric chosen.

12.
J Environ Manage ; 342: 118271, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37269726

ABSTRACT

Environmental perturbations such as changes in organic loading rate (OLR) can have deleterious effects on the anaerobic digestion process, leading to VFA accumulation and process failure. However, the operational history of a reactor, such as prior exposure to VFA build up, can impact a reactor's resistance to shock loads. In the present study, the effects of long term (>100 days) bioreactor (un)stability on OLR shock resistance were assessed. Three 4 L EGSB bioreactors were subjected to varying levels of process stability. Operational conditions such as OLR, temperature and pH were maintained stable in R1; R2 was subjected to a series of minor OLR perturbations and R3 was subjected to a series of non-OLR perturbations, including ammonium, temperature, pH and sulfide. The effect of these different operational histories on each reactor's resistance to a sudden 8-fold increase in OLR were assessed by monitoring COD removal efficiency and biogas production. The microbial communities of each reactor were monitored using 16S rRNA gene sequencing to understand the relationship between microbial diversity and reactor stability. It was determined that the stable (un-perturbed) reactor performed best in terms of its resistance to a large OLR shock, despite its lower microbial community diversity.


Subject(s)
Sewage , Waste Disposal, Fluid , RNA, Ribosomal, 16S , Bioreactors , Temperature , Anaerobiosis , Methane
13.
Toxicol Appl Pharmacol ; 473: 116597, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37321324

ABSTRACT

Tacrolimus (TAC)-based treatment is associated with nephrotoxicity and hepatotoxicity; however, the underlying molecular mechanisms responsible for this toxicity have not been fully explored. This study elucidated the molecular processes underlying the toxic effects of TAC using an integrative omics approach. Rats were sacrificed after 4 weeks of daily oral TAC administration at a dose of 5 mg/kg. The liver and kidney underwent genome-wide gene expression profiling and untargeted metabolomics assays. Molecular alterations were identified using individual data profiling modalities and further characterized by pathway-level transcriptomics-metabolomics integration analysis. Metabolic disturbances were mainly related to an imbalance in oxidant-antioxidant status, as well as in lipid and amino acid metabolism in the liver and kidney. Gene expression profiles also indicated profound molecular alterations, including in genes associated with a dysregulated immune response, proinflammatory signals, and programmed cell death in the liver and kidney. Joint-pathway analysis indicated that the toxicity of TAC was associated with DNA synthesis disruption, oxidative stress, and cell membrane permeabilization, as well as lipid and glucose metabolism. In conclusion, our pathway-level integration of transcriptome and metabolome and conventional analyses of individual omics profiles, provided a more comprehensive picture of the molecular changes resulting from TAC toxicity. This study also serves as a valuable resource for subsequent investigations aiming to understand the mechanism underlying the molecular toxicology of TAC.


Subject(s)
Multiomics , Tacrolimus , Rats , Animals , Tacrolimus/toxicity , Kidney , Metabolomics/methods , Lipids
14.
Metabolites ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37367920

ABSTRACT

Panax vietnamensis var. vietnamensis (PVV) and Panax vietnamensis var. fuscidiscus (PVF) both belong to Panax vietnamensis species and are chemically and morphologically similar, making it hard to distinguish for the consumer. Herein, 42 PVF and 12 PVV samples were collected in Quang Nam and Lai Chau Province, respectively, and subsequently characterized by ITSr-DNA sequence data to verify their origins. Next, untargeted metabolomics combined with multivariate statistical analysis was developed to differentiate PVV and PVF. The metabolic profiles of PVV and PVF were found to be distinct and classified well using Partial Least-Squares Discriminant Analysis (PLS-DA) in the training set. Among them, seven ginsenosides were of high abundance in PVV, while six were of high abundance in PVF. Next, the test set was used to validate 13 putative differential markers found in the training set, illustrating a complete match with the expression patterns of these ginsenosides in the training set. Finally, PLS-DA and linear Support Vector Machine models both indicated distinct ginsenoside profiles of PVV and PVF without misclassification in the test set. Conclusively, the developed untargeted metabolomics approach might serve as a powerful tool for the authentication of PVV and PVF at the metabolome level.

15.
J Pharm Biomed Anal ; 231: 115401, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37105045

ABSTRACT

Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 µg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 µg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.


Subject(s)
Caenorhabditis elegans , Harmine , Animals , Harmine/pharmacology , Triglycerides , Fatty Acids
16.
Biochimie ; 211: 153-163, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37062470

ABSTRACT

Type 2 diabetes mellitus (DM) poses a major burden for the treatment and control of tuberculosis (TB). Characterization of the underlying metabolic perturbations in DM patients with TB infection would yield insights into the pathophysiology of TB-DM, thus potentially leading to improvements in TB treatment. In this study, a multimodal metabolomics and lipidomics workflow was applied to investigate plasma metabolic profiles of patients with TB and TB-DM. Significantly different biological processes and biomarkers in TB-DM vs. TB were identified using a data-driven, knowledge-based framework. Changes in metabolic and signaling pathways related to carbohydrate and amino acid metabolism were mainly captured by amide HILIC column metabolomics analysis, while perturbations in lipid metabolism were identified by the C18 metabolomics and lipidomics analysis. Compared to TB, TB-DM exhibited elevated levels of bile acids and molecules related to carbohydrate metabolism, as well as the depletion of glutamine, retinol, lysophosphatidylcholine, and phosphatidylcholine. Moreover, arachidonic acid metabolism was determined as a potentially important factor in the interaction between TB and DM pathophysiology. In a correlation network of the significantly altered molecules, among the central nodes, chenodeoxycholic acid was robustly associated with TB and DM. Fatty acid (22:4) was a component of all significant modules. In conclusion, the integration of multimodal metabolomics and lipidomics provides a thorough picture of the metabolic changes associated with TB-DM. The results obtained from this comprehensive profiling of TB patients with DM advance the current understanding of DM comorbidity in TB infection and contribute to the development of more effective treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Tuberculosis , Humans , Diabetes Mellitus, Type 2/complications , Lipidomics , Tuberculosis/complications , Metabolomics/methods , Metabolome
17.
Chem Biol Interact ; 375: 110430, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36868495

ABSTRACT

The mechanism of indomethacin toxicity at the systemic level is largely unknown. In this study, multi-specimen molecular characterization was conducted in rats treated with three doses of indomethacin (2.5, 5, and 10 mg/kg) for 1 week. Kidney, liver, urine, and serum samples were collected and analyzed using untargeted metabolomics. The kidney and liver transcriptomics data (10 mg indomethacin/kg and control) were subjected to a comprehensive omics-based analysis. Indomethacin exposure at 2.5 and 5 mg/kg doses did not cause significant metabolome changes, whereas considerable alterations in the metabolic profile compared to the control were induced by a dose of 10 mg/kg. Decreased levels of metabolites and an increased creatine level in the urine metabolome indicated injury to the kidney. The integrated omics analysis in both liver and kidney revealed an oxidant-antioxidant imbalance due to an excess of reactive oxygen species, likely originating from dysfunctional mitochondria. Specifically, indomethacin exposure induced changes in metabolites related to the citrate cycle, cell membrane composition, and DNA synthesis in the kidney. The dysregulation of genes related to ferroptosis and suppression of amino acid and fatty acid metabolism were evidence of indomethacin-induced nephrotoxicity. In conclusion, a multi-specimen omics investigation provided important insights into the mechanism of indomethacin toxicity. The identification of targets that ameliorate indomethacin toxicity will enhance the therapeutic utility of this drug.


Subject(s)
Indomethacin , Multiomics , Rats , Animals , Indomethacin/toxicity , Kidney/metabolism , Metabolomics , Metabolome
18.
Biomed Pharmacother ; 158: 114187, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916440

ABSTRACT

In this study, we investigated the lipidome of tuberculosis patients during standard chemotherapy to discover biosignatures that could aid therapeutic monitoring. UPLC-QToF MS was used to analyze 82 baseline and treatment plasma samples of patients with pulmonary tuberculosis. Subsequently, a data-driven and knowledge-based workflow, including robust annotation, statistical analysis, and functional analysis, was applied to assess lipid profiles during treatment. Overall, the lipids species from 17 lipid subclasses were significantly altered by anti-tuberculosis chemotherapy. Cholesterol ester (CE), monoacylglycerols, and phosphatidylcholine (PC) were upregulated, whereas triacylglycerols, sphingomyelin, and ether-linked phosphatidylethanolamines (PE O-) were downregulated. Notably, PCs demonstrated a clear upward expression pattern during tuberculosis treatment. Several lipid species were identified as potential biomarkers for therapeutic monitoring, such as PC(42:6), PE(O-40:5), CE(24:6), and dihexosylceramide Hex2Cer(34:2;2 O). Functional and lipid gene enrichment analysis revealed alterations in pathways related to lipid metabolism and host immune responses. In conclusion, this study provides a foundation for the use of lipids as biomarkers for clinical management of tuberculosis.


Subject(s)
Cholesterol Esters , Lipid Metabolism , Humans , Triglycerides , Phosphatidylcholines , Biomarkers
19.
Environ Sci Pollut Res Int ; 30(1): 2061-2074, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35927405

ABSTRACT

Settled dust samples from Vietnamese end-of-life vehicle (ELV) processing, urban, and rural areas were analyzed for polybrominated diphenyl ethers (PBDEs) and other current-use brominated flame retardants (BFRs). PBDE levels found in dust samples collected from ELV workshops (median 390; range 120-520 ng/g) and nearby living areas (110; 36-650 ng/g) were generally higher than those in common house dust (25-170 ng/g). BDE-209 was the most predominant congener detected in almost all the samples, indicating extensive application of products containing deca-BDE mixtures. The dust samples from ELV workplaces showed a more abundance of lower brominated congeners (e.g., tetra- to hexa-BDEs) that may originate from car interior materials treated by penta-BDE formulations. Concentrations of other BFRs decreased in the order urban > rural > ELV dust, reflecting the current use of these compounds in new consumer products. Decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were the major alternative BFRs. Daily intake doses and hazard indexes of PBDEs and some other BFRs through dust ingestion were estimated and showed acceptable levels of risk. However, more comprehensive risk assessment considering multiple exposure pathways should be performed, especially for ELV workers and children in the ELV processing and urban areas.


Subject(s)
Environmental Exposure , Flame Retardants , Child , Humans , Environmental Exposure/analysis , Environmental Monitoring , Dust/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Vietnam , Risk Assessment
20.
Front Pharmacol ; 14: 1156655, 2023.
Article in English | MEDLINE | ID: mdl-38410524

ABSTRACT

Background: Uncontrolled blood pressure is a major risk factor for cardiovascular diseases. Fixed-dose combination (FDC) therapy offers a promising approach to addressing this challenge by providing a convenient single-tablet solution that enhances the effectiveness of blood pressure control. In our systematic review, we assess the effectiveness of perindopril/amlodipine FDC in managing blood pressure. Methods: We conducted a comprehensive search across four primary electronic databases, namely, PubMed, Virtual Health Library (VHL), Global Health Library (GHL), and Google Scholar, as of 8 February 2022. Additionally, we performed a manual search to find relevant articles. The quality of the selected articles was evaluated using the Study Quality Assessment Tools (SQAT) checklist from the National Institute of Health and the ROB2 tool from Cochrane. Results: Our systematic review included 17 eligible articles. The findings show that the use of perindopril/amlodipine FDC significantly lowers blood pressure and enhances the quality of blood pressure control. Compared to the comparison group, the perindopril/amlodipine combination tablet resulted in a higher rate of blood pressure response and normalization. Importantly, perindopril/amlodipine FDC contributes to improved patient adherence with minimal side effects. However, studies conducted to date have not provided assessments of the cost-effectiveness of perindopril/amlodipine FDC. Conclusion: In summary, our analysis confirms the effectiveness of perindopril/amlodipine FDC in lowering blood pressure, with combination therapy outperforming monotherapy and placebo. Although mild adverse reactions were observed in a small subset of participants, cost-effectiveness assessments for this treatment remain lacking in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...