Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38715364

ABSTRACT

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.

2.
Sci Rep ; 13(1): 17337, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833554

ABSTRACT

There is little information on BNT162b2 vaccine-induced variant-specific immunogenicity, safety data and dynamics of breakthrough infections in pediatric populations. We addressed these questions using a prospective two dose BNT162b2 (10 mcg) vaccination cohort study of healthy children 5-11 years in Singapore. Follow up included blood samples at scheduled visits, daily vaccination symptom diary and confirmation of SARS-CoV-2 infection. Surrogate virus neutralization test (sVNT) and spike-specific T cell responses against SARS-CoV-2 variants were performed. The mean age of 127 participants was 8.27 years (SD 1.95) and 51.2% were males. The median sVNT level against original variant after 1 dose and 2 dose vaccination was 61.4% and 95.1% respectively (p < 0.0001). Neutralizing antibodies against the Omicron variant was the lowest, median 22.4% (IQR 16.5-30.8). However, T cell IFN-γ cytokine response against Omicron variant was high and remained so about 4 months after vaccination. Fever rate increased significantly from 4% (dose 1) to 11.5% (dose 2). The risk of Omicron breakthrough infection decreased by 7.8% for every 1% increase in sVNT inhibition level measured after dose 2 vaccination. BNT162b2 vaccines were safe, induced good T cell responses but poor neutralizing antibodies against Omicron in children. Low neutralizing antibody levels post-vaccination was predictive of subsequent breakthrough infection.


Subject(s)
COVID-19 , Vaccines , Male , Humans , Child , Aged, 80 and over , Female , BNT162 Vaccine , Breakthrough Infections , Cohort Studies , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
3.
Sci Adv ; 9(30): eade3470, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37494438

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2. Among the six mAbs identified, one (E7) showed better huACE2-dependent sarbecovirus neutralizing potency and breadth than any other mAbs reported to date. Mutagenesis and cryo-electron microscopy studies indicate that these mAbs have a unique RBD contact footprint and that E7 binds to a quaternary structure-dependent epitope.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Antibodies, Viral , Neutralization Tests , BNT162 Vaccine , Antibodies, Monoclonal/chemistry , Cryoelectron Microscopy , COVID-19/prevention & control , SARS-CoV-2
4.
Nat Microbiol ; 7(11): 1756-1761, 2022 11.
Article in English | MEDLINE | ID: mdl-36195753

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins , Antibodies, Viral , Membrane Glycoproteins
5.
Nat Commun ; 13(1): 6285, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271047

ABSTRACT

Vaccines that are broadly cross-protective against current and future SARS-CoV-2 variants of concern (VoC) or across the sarbecoviruses subgenus remain a priority for public health. Virus neutralization is the best available correlate of protection. To define the magnitude and breadth of cross-neutralization in individuals with different exposure to SARS-CoV-2 infection and vaccination, we here use a multiplex surrogate neutralization assay based on virus spike receptor binding domains of multiple SARS-CoV-2 VoC, as well as related bat and pangolin viruses. We include sera from cohorts of individuals vaccinated with two or three doses of mRNA (BNT162b2) or inactivated SARS-CoV-2 (Coronavac or Sinopharm) vaccines with or without a history of previous SARS-CoV-2 or SARS-CoV-1 infection. SARS-CoV-2 or SARS-CoV-1 infection followed by BNT162b2 vaccine, Omicron BA.2 breakthrough infection following BNT162b2 vaccine or a third dose of BNT162b2 following two doses of BNT162b2 or Coronavac elicit the highest and broadest neutralization across VoCs. For both breadth and magnitude of neutralization across all sarbecoviruses, those infected with SARS-CoV-1 immunized with BNT162b2 outperform all other combinations of infection and/or vaccination. These data may inform vaccine design strategies for generating broadly neutralizing antibodies to SARS-CoV-2 variants or across the sarbecovirus subgenus.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2 , Neutralization Tests , Antibodies, Viral , Broadly Neutralizing Antibodies , BNT162 Vaccine , COVID-19/prevention & control , Receptors, Virus , RNA, Messenger
7.
Res Sq ; 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35233568

ABSTRACT

The SARS-CoV-2 B.1.1.529 lineage, Omicron variant, was first detected in November 2021 and carries 32 amino acid mutations in the spike protein (15 in RBD) and exhibits significant escape of neutralizing antibodies targeting the parental SARS-CoV-2 virus. Here, we performed a high-resolution multiplex (16-plex) surrogate virus neutralization assay covering all major SARS-CoV-2 variants and pre-emergent ACE2-binding sarbecoviruses against 20 different human serum panels from infected, vaccinated and hybrid immune individuals which had vaccine-breakthrough infections or infection followed by vaccination. Among all sarbecoviruses tested, we observed 1.1 to 4.7-, 2.3 to 10.3- and 0.7 to 33.3-fold reduction in neutralization activities to SARS-CoV-2 Beta, Omicron and SARS-CoV-1, respectively. Among the SARS-CoV-2 related sarbecoviruses, it is found that the genetically more distant bat RaTG13 and pangolin GX-P5L sarbecoviruses had less neutralization escape than Omicron. Our data suggest that the SARS-CoV-2 variants emerged from the changed immune landscape of human populations are more potent in escaping neutralizing antibodies, from infection or vaccination, than pre-emergent sarbecoviruses naturally evolved in animal populations with no or less immune selection pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...