Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Med Phys ; 51(6): 4472-4481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734989

ABSTRACT

BACKGROUND: In a dedicated effort to improve the assessment of clonal hematopoiesis (CH) and study leukemia risk following radiotherapy, we are developing a large-scale cohort study among cancer patients who received radiation. To that end, it will be critical to analyze dosimetric parameters of red bone marrow (ABM) exposure in relation to CH and its progression to myeloid neoplasms, requiring reconstruction method for ABM doses of a large-scale patients rapidly and accurately. PURPOSE: To support a large-scale cohort study on the assessment of clonal hematopoiesis and leukemia risk following radiotherapy, we present a new method for the rapid reconstruction of ABM doses of radiotherapy among cancer patients. METHODS: The key idea of the presented method is to segment patient bones rapidly and automatically by matching a whole-body computational human phantom, in which the skeletal system is divided into 34 bone sites, to patient CT images via 3D skeletal registration. The automatic approach was used to segment site-specific bones for 40 radiotherapy patients. Also, we segmented the bones manually. The bones segmented both manually and automatically were then combined with the patient dose matrix calculated by the treatment planning system (TPS) to derive patient ABM dose. We evaluated the performance of the automatic method in geometric and dosimetric accuracy by comparison with the manual approach. RESULTS: The pelvis showed the best geometric performance [volume overlap fraction (VOF): 52% (mean) with 23% (σ) and average distance (AD): 0.8 cm (mean) with 0.5 cm (σ)]. The pelvis also showed the best dosimetry performance [absorbed dose difference (ADD): 0.7 Gy (mean) with 1.0 Gy (σ)]. Some bones showed unsatisfactory performances such as the cervical vertebrae [ADD: 5.2 Gy (mean) with 10.8 Gy (σ)]. This impact on the total ABM dose, however, was not significant. An excellent agreement for the total ABM dose was indeed observed [ADD: 0.4 Gy (mean) with 0.4 Gy (σ)]. The computation time required for dose calculation using our method was robust (about one minute per patient). CONCLUSIONS: We confirmed that our method estimates ABM doses across treatment sites accurately, while providing high computational efficiency. The method will be used to reconstruct patient-specific ABM doses for dose-response assessment in a large cohort study. The method can also be applied to prospective dose calculation within a clinical TPS to support clinical decision making at the point of care.


Subject(s)
Bone Marrow , Radiotherapy Dosage , Humans , Bone Marrow/radiation effects , Radiation Dosage , Epidemiologic Studies , Time Factors , Radiometry , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Phantoms, Imaging
2.
Health Phys ; 125(6): 434-445, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37823824

ABSTRACT

ABSTRACT: As part of the activities of the International Commission on Radiological Protection (ICRP) Task Group 103, the present study developed a new set of respiratory tract organs consisting of the extrathoracic, bronchial, bronchiolar, and alveolar-interstitial regions for newborn, 1-, 5-, 10-, and 15-y-old males and females for use in pediatric mesh-type reference computational phantoms. The developed respiratory tract organs, while preserving the original topologies of those of the pediatric voxel-type reference computational phantoms of ICRP Publication 143, have improved anatomy and detailed structure and also include µm-thick target and source regions prescribed in ICRP Publication 66. The dosimetric impact of the developed respiratory tract organs was investigated by calculating the specific absorbed fraction for internal electron exposures, which were then compared with the ICRP Task Group 96 values. The results showed that except for the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger specific absorbed fractions than the Task Group 96 values. The maximum difference was a factor of ~3.5 for the extrathoracic-2 basal cell and surface as target and source regions, respectively. These results reflect the differences in the target masses and geometry caused by the anatomical enhancement of the pediatric mesh phantoms. For the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger values for low energy ranges and lower values with increasing energies, owing to the differences in the size and shape of the alveolar-interstitial region.


Subject(s)
Radiometry , Respiratory System , Humans , Male , Female , Child , Infant, Newborn , Radiation Dosage , Radiometry/methods , Electrons , Phantoms, Imaging , Monte Carlo Method
3.
Brachytherapy ; 22(5): 673-685, 2023.
Article in English | MEDLINE | ID: mdl-37301703

ABSTRACT

PURPOSE: The current protocol for use of the image-guided adaptive brachytherapy (IGABT) procedure entails transport of a patient between the treatment room and the 3-D tomographic imaging room after implantation of the applicators in the body, which movement can cause position displacement of the applicator. Moreover, it is not possible to track 3-D radioactive source movement inside the body, even though there can be significant inter- and intra-fractional patient-setup changes. In this paper, therefore, we propose an online single-photon emission computed tomography (SPECT) imaging technique with a combined C-arm fluoroscopy X-ray system and attachable parallel-hole collimator for internal radioactive source tracking of every source position in the applicator. METHODS AND MATERIALS: In the present study, using Geant4 Monte Carlo (MC) simulation, the feasibility of high-energy gamma detection with a flat-panel detector for X-ray imaging was assessed. Further, a parallel-hole collimator geometry was designed based on an evaluation of projection image quality for a 192Ir point source, and 3-D limited-angle SPECT-image-based source-tracking performances were evaluated for various source intensities and positions. RESULTS: The detector module attached to the collimator could discriminate the 192Ir point source with about 3.4% detection efficiency when including the total counts in the entire deposited energy region. As the result of collimator optimization, hole size, thickness, and length were determined to be 0.5, 0.2, and 45 mm, respectively. Accordingly, the source intensities and positions also were successfully tracked with the 3-D SPECT imaging system when the C-arm was rotated within 110° in 2 seconds. CONCLUSIONS: We expect that this system can be effectively implemented for online IGABT and in vivo patient dose verification.


Subject(s)
Brachytherapy , Humans , Monte Carlo Method , Brachytherapy/methods , Feasibility Studies , Tomography, Emission-Computed, Single-Photon/methods , Phantoms, Imaging , Tomography, X-Ray Computed
4.
Biomed Phys Eng Express ; 9(4)2023 05 23.
Article in English | MEDLINE | ID: mdl-37146592

ABSTRACT

Background. It is critical to monitor the radiation dose delivered to patients undergoing radiography and fluoroscopy to prevent both acute and potential long-term adverse health effects. Accurate estimation of organ doses is essential to ensuring that radiation dose is maintained As Low As Reasonably Achievable. We developed a graphical user interface-based organ dose calculation tool for pediatric and adult patients undergoing radiography and fluoroscopy examinations.Methods. Our dose calculator follows the four sequential steps. First, the calculator obtains input parameters related to patient age and gender, and x-ray source data. Second, the program creates an input file describing the anatomy and material composition of a phantom, x-ray source, and organ dose scorers for Monte Carlo radiation transport using the user input parameters. Third, a built-in Geant4 module was developed to import the input file and to calculate organ absorbed doses and skeletal fluences through Monte Carlo radiation transport. Lastly, active marrow and endosteum doses are derived from the skeletal fluences and effective dose is calculated from the organ and tissue doses. Following benchmarking with MCNP6, we conducted some benchmarking calculations calculated organ doses for an illustrative cardeiac interventional fluoroscopy and compared the results with those from an existing dose calculator, PCXMC.Results. The graphical user interface-based program was entitled National Cancer Institute dosimetry system for Radiography and Fluoroscopy (NCIRF). Organ doses calculated from NCIRF showed an excellent agreement with those from MCNP6 in the simulation of an illustrative fluoroscopy exam. In the cardiac interventional fluoroscopy exam of the adult male and female phantoms, the lungs received relatively greater doses than any other organs. PCXMC based on stylistic phantoms overall overestimated major organ doses calculated from NCIRF by up to 3.7-fold (active bone marrow).Conclusion. We developed an organ dose calculation tool for pediatric and adult patients undergoing radiography and fluoroscopy examinations. NCIRF could substantially increase the accuracy and efficiency of organ dose estimation in radiography and fluoroscopy exams.


Subject(s)
Radiometry , Adult , Humans , Male , Child , Female , Radiation Dosage , Radiography , Radiometry/methods , Fluoroscopy , Computer Simulation
5.
Health Phys ; 124(4): 316-325, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36696362

ABSTRACT

ABSTRACT: In a recent study, a comprehensive library composed of 212 phantoms with different body sizes was established by deforming the adult male and female mesh-type reference computational phantoms (MRCPs) of ICRP Publication 145 and the next-generation ICRP reference phantoms over the current voxel-type reference phantoms of ICRP Publication 110. In this study, as an application of the MRCP-based phantom library, we investigated dosimetric impacts due to the different body sizes for neutron external exposures. A comprehensive dataset of organ/tissue dose coefficients (DCs) for idealized external neutron beams with four phantoms for each sex representatively selected from the phantom library were produced by performing Monte Carlo simulations using the Geant4 code. The body size-dependent DCs produced in this study were systematically analyzed, observing that the variation of the body weights overall played a more important role in organ/tissue dose calculations than the variation of the body heights. We also observed that the reference body-size DCs based on the MRCPs indeed significantly under- or overestimated the DCs produced using the phantoms, especially for those much heavier (male: 175 cm and 140 kg; female: 165 cm and 140 kg) than the reference body sizes (male: 176 cm and 73 kg; female: 163 cm and 60 kg) by up to 1.6 or 3.3 times, respectively. We believe that the use of the body size-dependent DCs, together with the reference body-size DCs, should be beneficial for more reliable organ/tissue dose estimates of individuals considering their body sizes rather than the most common conventional approach, i.e., the sole use of the reference body size DCs.


Subject(s)
Cholangiopancreatography, Magnetic Resonance , Radiometry , Humans , Adult , Male , Female , Body Size , Body Weight , Phantoms, Imaging , Neutrons , Monte Carlo Method , Radiation Dosage
6.
Biomed Phys Eng Express ; 9(1)2022 12 23.
Article in English | MEDLINE | ID: mdl-36562506

ABSTRACT

Monte Carlo (MC) methods are considered the gold-standard approach to dose estimation for normal tissues outside the treatment field (out-of-field) in proton therapy. However, the physics of secondary particle production from high-energy protons are uncertain, particularly for secondary neutrons, due to challenges in performing accurate measurements. Instead, various physics models have been developed over the years to reenact these high-energy interactions based on theory. It should thus be acknowledged that MC users must currently accept some unknown uncertainties in out-of-field dose estimates. In the present study, we compared three MC codes (MCNP6, PHITS, and TOPAS) and their available physics models to investigate the variation in out-of-field normal tissue dosimetry for pencil beam scanning proton therapy patients. Total yield and double-differential (energy and angle) production of two major secondary particles, neutrons and gammas, were determined through irradiation of a water phantom at six proton energies (80, 90, 100, 110, 150, and 200 MeV). Out-of-field normal tissue doses were estimated for intracranial irradiations of 1-, 5-, and 15-year-old patients using whole-body computational phantoms. Notably, the total dose estimates for each out-of-field organ varied by approximately 25% across the three codes, independent of its distance from the treatment volume. Dose discrepancies amongst the codes were linked to the utilized physics model, which impacts the characteristics of the secondary radiation field. Using developer-recommended physics, TOPAS produced both the highest neutron and gamma doses to all out-of-field organs from all examined conditions; this was linked to its highest yields of secondary particles and second hardest energy spectra. Subsequent results when using other physics models found reduced yields and energies, resulting in lower dose estimates. Neutron dose estimates were the most impacted by physics model choice, and thus the variation in out-of-field dose estimates may be even larger than 25% when considering biological effectiveness.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Radiometry/methods , Protons , Radiotherapy Dosage , Monte Carlo Method
7.
Biomed Phys Eng Express ; 8(6)2022 10 19.
Article in English | MEDLINE | ID: mdl-36206721

ABSTRACT

Background. Although computed tomography (CT) has played a critical role in medical care since its introduction in the 1970s, its potential long-term risk of adverse health effects has been of concern. It is crucial to accurately estimate the radiation dose delivered to the patient's critical organs to ensure the dose is As Low As Reasonably Achievable. However, organ-level dose calculation tools for pediatric and adult patients with various body sizes are rare. We extended the existing CT organ dose calculator, NCICT 1.0, which is based on reference-size phantoms, to include body size-specific pediatric and adult phantoms.Methods. We calculated body size-specific organ doses normalized to CTDIvolby using a library of 158 pediatric and 193 adult computational human phantoms with various body sizes combined with a Monte Carlo radiation transport code, MCNP6. We also created a library of generic tube current modulation (TCM) profiles for the phantom library using a ray-tracing algorithm and implemented them into organ dose calculations. We validated organ doses for the body size-specific phantoms using those calculated from ten abdominal CT patients. We also evaluated potential dosimetric errors caused by only using reference phantoms for patients with different body sizes.Results. Organ dose coefficients and TCM profiles for 351 pediatric and adult body size-specific phantoms were implemented into NCICT 2.0. The dose coefficients from the ten abdominal CT patients agreed with those from the program within 13%. The organ doses for the overweight phantoms were overestimated by over 80% when only reference size phantoms were used.Conclusion. We confirmed that the upgraded dose calculator NCICT 2.0 could substantially reduce potential dosimetric errors caused by using only reference size phantoms. The program should be useful for the radiology community to accurately monitor organ doses for pediatric and adult CT patients with various body sizes.


Subject(s)
Radiometry , Tomography, X-Ray Computed , Adult , Humans , Child , Radiation Dosage , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Monte Carlo Method
8.
Phys Med Biol ; 67(18)2022 09 12.
Article in English | MEDLINE | ID: mdl-35981551

ABSTRACT

Objective.The red bone marrow (RBM) and bone endosteum (BE), which are required for effective dose calculation, are macroscopically modeled in the reference phantoms of the international commission on radiological protection (ICRP) due to their microscopic and complex histology. In the present study, the detailed bone models were developed to simplify the dose calculation process for skeletal dosimetry.Approach.The detailed bone models were developed based on the bone models developed at the University of Florida. A new method was used to update the definition of BE region by storing the BE location indices using virtual sub-voxels. The detailed bone models were then installed in the spongiosa regions of the ICRP mesh-type reference computational phantoms (MRCPs) via the parallel geometry feature of the Geant4 code.Main results.Comparing the results between the detailed-bone-installed MRCPs and the original MRCPs with the absorbed dose to spongiosa and fluence-to-dose response function (DRF)-based methods, the DRF-based method showed much smaller but still significant differences. Compared with the values given in ICRPPublications116 and 133, the differences were very large (i.e. several orders of magnitudes), due mainly to the anatomical improvement of the skeletal system in the MRCPs; that is, spongiosa and medullary cavity are fully enclosed by cortical bone in the MRCPs but not in the ICRP-110 phantoms.Significance.The detailed bone models enable the direct calculation of the absorbed doses to the RBM and BE, simplifying the dose calculation process and potentially improving the consistency and accuracy of skeletal dosimetry.


Subject(s)
Radiation Protection , Adult , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiometry/methods , X-Ray Microtomography
9.
J Radiol Prot ; 42(3)2022 08 19.
Article in English | MEDLINE | ID: mdl-35921807

ABSTRACT

In line with the activities of Task Group 103 under the International Commission on Radiological Protection (ICRP), the present study was conducted to develop a new set of alimentary tract organs consisting of the oral cavity, oesophagus, stomach, small intestine, and colon for the newborn, 1 year-old, 5 year-old, 10 year-old, and 15 year-old males and females for use in the pediatric mesh-type reference computational phantoms (MRCPs). The developed alimentary tract organs of the pediatric MRCPs, while nearly preserving the original topology and shape of those of the pediatric voxel-type reference computational phantoms (VRCPs) of ICRPPublication 143, present considerable anatomical improvement and include all micrometre-scale target and source regions as prescribed in ICRPPublication 100. To investigate the dosimetric impact of the developed alimentary tract organs, organ doses and specific absorbed fractions were computed for certain external exposures to photons and electrons and internal exposures to electrons, respectively, which were then compared with the values computed using the current ICRP models (i.e. pediatric VRCPs and ICRP-100 stylised models). The results showed that for external exposures to penetrating radiations (i.e. photons >0.04 MeV), there was generally good agreement between the compared values, within a 10% difference, except for the oral mucosa. For external exposures to weakly penetrating radiations (i.e. low-energy photons and electrons), there were significant differences, up to a factor of ∼8300, owing to the geometric difference caused by the anatomical enhancement in the MRCPs. For internal exposures of electrons, there were significant differences, the maximum of which reached a factor of ∼73 000. This was attributed not only to the geometric difference but also to the target mass difference caused by the different luminal content mass and organ shape.


Subject(s)
Radiation Protection , Surgical Mesh , Child , Child, Preschool , Computer Simulation , Female , Humans , Infant , Infant, Newborn , Male , Monte Carlo Method , Phantoms, Imaging , Photons , Radiation Dosage , Radiation Protection/methods , Radiometry/methods
10.
Phys Med Biol ; 67(3)2022 01 28.
Article in English | MEDLINE | ID: mdl-35026741

ABSTRACT

Objective. We conducted a Monte Carlo study to comprehensively investigate the fetal dose resulting from proton pencil beam scanning (PBS) craniospinal irradiation (CSI) during pregnancy.Approach. The gestational-age dependent pregnant phantom series developed at the University of Florida (UF) were converted into DICOM-RT format (CT images and structures) and imported into a treatment planning system (TPS) (Eclipse v15.6) commissioned to a IBA PBS nozzle. A proton PBS CSI plan (prescribed dose: 36 Gy) was created on the phantoms. The TOPAS MC code was used to simulate the proton PBS CSI on the phantoms, for which MC beam properties at the nozzle exit (spot size, spot divergence, mean energy, and energy spread) were matched to IBA PBS nozzle beam measurement data. We calculated mean absorbed doses for 28 organs and tissues and whole body of the fetus at eight gestational ages (8, 10, 15, 20, 25, 30, 35, and 38 weeks). For contextual purposes, the fetal organ/tissue doses from the treatment planning CT scan of the mother's head and torso were estimated using the National Cancer Institute dosimetry system for CT (NCICT, Version 3) considering a low-dose CT protocol (CTDIvol: 8.97 mGy).Main results. The majority of the fetal organ/tissue doses from the proton PBS CSI treatment fell within a range of 3-6 mGy. The fetal organ/tissue doses for the 38 week phantom showed the largest variation with the doses ranging from 2.9 mGy (adrenals) to 8.2 mGy (eye lenses) while the smallest variation ranging from 3.2 mGy (oesophagus) to 4.4 mGy (brain) was observed for the doses for the 20 week phantom. The fetal whole-body dose ranged from 3.7 mGy (25 weeks) to 5.8 mGy (8 weeks). Most of the fetal doses from the planning CT scan fell within a range of 7-13 mGy, approximately 2-to-9 times lower than the fetal dose equivalents of the proton PBS CSI treatment (assuming a quality factor of 7).Significance. The fetal organ/tissue doses observed in the present work will be useful for one of the first clinically informative predictions on the magnitude of fetal dose during proton PBS CSI during pregnancy.


Subject(s)
Craniospinal Irradiation , Proton Therapy , Female , Fetus/diagnostic imaging , Humans , Monte Carlo Method , Phantoms, Imaging , Pregnancy , Proton Therapy/methods , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
11.
Phys Imaging Radiat Oncol ; 19: 138-144, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34485719

ABSTRACT

BACKGROUND AND PURPOSE: Quantifying radiation dose to cardiac substructures is important for research on the etiology and prevention of complications following radiotherapy; however, segmentation of substructures is challenging. In this study we demonstrate the application of our atlas-based automatic segmentation method to breast cancer radiotherapy plans for generating radiation doses in support of late effects research. MATERIAL AND METHODS: We applied our segmentation method to contour heart substructures on the computed tomography (CT) images of 70 breast cancer patients who received external photon radiotherapy. Two cardiologists provided manual segmentation of the whole heart (WH), left/right atria, left/right ventricles, and left anterior descending artery (LAD). The automatically contours were compared with manual delineations to evaluate similarity in terms of geometry and dose. RESULTS: The mean Dice similarity coefficient between manual and automatic segmentations was 0.96 for the WH, 0.65 to 0.82 for the atria and ventricles, and 0.06 for the LAD. The mean average surface distance was 1.2 mm for the WH, 3.4 to 4.1 mm for the atria and ventricles, and 6.4 mm for the LAD. We found the dose to the cardiac substructures based on our automatic segmentation agrees with manual segmentation within expected observer variability. For left breast patients, the mean absolute difference in mean dose was 0.1 Gy for the WH, 0.2 to 0.7 Gy for the atria and ventricles, and 1.8 Gy for the LAD. For right breast patients, these values were 0.0 Gy, 0.1 to 0.4 Gy, and 0.4 Gy, respectively. CONCLUSION: Our automatic segmentation method will facilitate the development of radiotherapy prescriptive criteria for mitigating cardiovascular complications.

12.
J Radiol Prot ; 41(3)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34082408

ABSTRACT

Very recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) completed the development of the paediatric mesh-type reference computational phantoms (MRCPs) comprising ten phantoms (newborn, one year-old, five year-old, ten year-old, and fifteen year-old males and females). The paediatric MRCPs address the limitations of ICRPPublication 143's paediatric reference computational phantoms, which are in voxel format, stemming from the nature of the voxel geometry and the limited voxel resolutions. The paediatric MRCPs were constructed by converting the voxel-type reference phantoms to a high-quality mesh format with substantial enhancements in the detailed anatomy of the small and complex organs and tissues (e.g. bones, lymphatic nodes, and extra-thoracic region). Besides, the paediatric MRCPs were developed in consideration of the intra-organ blood contents and by modelling the micron-thick target and source regions of the skin, lens, urinary bladder, alimentary tract organs, and respiratory tract organs prescribed by the ICRP. For external idealised exposures, the paediatric MRCPs provide very similar effective dose coefficients (DCEs) to those from the ICRP-143 phantoms but significantly different values for weakly penetrating radiations (e.g. the difference of ∼20 000 times for 10 keV electron beams). This paper introduces the developed paediatric MRCPs with a brief explanation of the construction process. Then, it discusses their computational performance in Geant4, PHITS, and MCNP6 in terms of memory usage and computation speed and their impact on dose calculations by comparing their calculated values of DCEs for external exposures with those of the voxel-type reference phantoms.


Subject(s)
Radiation Protection , Surgical Mesh , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage
13.
J Radiol Prot ; 41(2)2021 06 01.
Article in English | MEDLINE | ID: mdl-33882468

ABSTRACT

The International Commission on Radiological Protection (ICRP) recently reduced the dose limit for the eye lens for occupational exposure from 150 mSv yr-1to 20 mSv yr-1, as averaged over defined periods of five years, with no annual dose in a single year exceeding 50 mSv, emphasizing the importance of the accurate estimation of lens dose. In the present study, for more accurate lens dosimetry, detailed eye models were developed for children and adolescents (newborns and 1, 5, 10, and 15 year olds), which were then incorporated into the pediatric mesh-type reference computational phantoms (MRCPs) and used to calculate lens dose coefficients (DCs) for photon and electron exposures. Finally, the calculated values were compared with those calculated with the adult MRCPs in order to determine the age dependence of the lens DCs. For photon exposures, the lens DCs of the pediatric MRCPs showed some sizable differences from those of the adult MRCPs at very low energies (10 and 15 keV), but the differences were all less than 35%, except for the posterior-anterior irradiation geometry, for which the lens dose is not of primary concern. For electron exposures, much larger differences were found. For the anterior-posterior (AP) and isotropic irradiation geometries, the largest differences between the lens DCs of the pediatric and adult phantoms were found in the energy range of 0.6-1 MeV, where the newborn lens DCs were larger by up to a factor of ∼5 than the adult. The lens DCs of the present study, which were calculated for the radiosensitive region of the lens, also were compared with those for the entire lens in the AP irradiation geometry. Our results showed that the DCs of the entire lens were similar to those of the radiosensitive region for 0.02-2 MeV photons and >2 MeV electrons, but that for the other energy ranges, significant differences were noticeable, i.e. 10%-40% for photons and up to a factor of ∼5 for electrons.


Subject(s)
Lens, Crystalline , Radiometry , Adolescent , Adult , Child , Humans , Infant, Newborn , Monte Carlo Method , Phantoms, Imaging , Photons , Radiation Dosage
14.
Radiat Environ Biophys ; 60(2): 317-328, 2021 05.
Article in English | MEDLINE | ID: mdl-33704559

ABSTRACT

In a previous study, posture-dependent dose coefficients (DCs) for photon external exposures were calculated using the adult male and female mesh-type reference computational phantoms (MRCPs) of the International Commission on Radiological Protection (ICRP) that had been transformed into five non-standing postures (i.e. walking, sitting, bending, kneeling, and squatting). As an extension, the present study was conducted to establish another DC dataset for external exposures to neutrons by performing Monte Carlo radiation transport simulations with the adult male and female MRCPs in the five non-standing postures. The resulting dataset included the DCs for absorbed doses (i.e., organ/tissue-averaged absorbed doses) delivered to 29 individual organs/tissues, and for effective doses for neutron energies ranging from 10-9 to 104 MeV in six irradiation geometries: antero-posterior (AP), posteroanterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT), and isotropic (ISO) geometries. The comparison of DCs for the non-standing MRCPs with those of the standing MRCPs showed significant differences. In the lateral irradiation geometries, for example, the standing MRCPs overestimate the breast DCs of the squatting MRCPs by up to a factor of 4 due to the different arm positions but underestimate the gonad DCs by up to about 17 times due to the different leg positions. The impact of different postures on effective doses was generally less than that on organ doses but still significant; for example, the standing MRCPs overestimate the effective doses of the bending MRCPs only by 20% in the AP geometry at neutron energies less than 50 MeV, but underestimate those of the kneeling MRCPs by up to 40% in the lateral geometries at energies less than 0.1 MeV.


Subject(s)
Neutrons , Posture , Radiation Dosage , Adult , Computer Simulation , Female , Humans , Male , Models, Theoretical , Monte Carlo Method , Phantoms, Imaging , Radiation Exposure
15.
J Radiol Prot ; 41(4)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-33647886

ABSTRACT

For use in electron paramagnetic resonance dosimetry with tooth enamel, in the present study, very detailed mesh-type tooth models composed of 198 individual tooth models (i.e. newborn: 20; 1 year: 28; 5 years: 48; 10 years: 38; 15 years: 32; and adult: 32) were developed for each sex. The developed tooth models were then implanted in the International Commission on Radiological Protection pediatric and adult mesh-type reference computational phantoms and used to calculate tooth enamel doses, by Monte Carlo simulations with Geant4, for external photon exposures in several idealized irradiation geometries. The calculated dose values were then compared to investigate the dependency of the enamel dose on the age and sex of the phantom and the sites of the teeth. The results of the present study generally show that, if the photon energy is low (i.e. <0.1 MeV), the enamel dose is significantly affected by the age and sex of the phantom and also the sites of the teeth used for dose calculation; the differences are frequently greater than a few times or even orders of magnitude. However, with a few exceptions, the enamel dose was hardly affected by these parameters for energies between 0.1 and 3 MeV. For energies >3 MeV, moderate differences were observed (i.e., up to a factor of two), due to the existence of dose build-up in the head of the phantom for high-energy photons. The calculated dose values were also compared with those of the previous studies where voxel and mathematical models were used to calculate the enamel doses. The results again show significant differences at low energies, e.g., up to ∼3500 times at 0.015 MeV, which are mainly due to the differences in the level of tooth-modeling detailedness.


Subject(s)
Radiometry , Surgical Mesh , Adult , Child , Humans , Infant, Newborn , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage
16.
J Radiol Prot ; 41(2)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33401263

ABSTRACT

In 2016, the International Commission on Radiological Protection (ICRP) launched Task Group 103 (TG 103) for the explicit purpose of developing a new generation of adult and pediatric reference computational phantoms, named 'mesh-type reference computational phantoms (MRCPs)', that can overcome the limitations of voxel-type reference computational phantoms (VRCPs) of ICRPPublications 110and143due to their finite voxel resolutions and the nature of voxel geometry. After completing the development of the adult MRCPs, TG 103 has started the development of pediatric MRCPs comprising 10 phantoms (male and female versions of the reference newborn, 1-year-old, 5-year-old, 10-year-old, and 15-year-old). As part of the TG 103 project, within the present study, the skeletal systems, one of the most important and complex organ systems of the body, were developed for each phantom age and sex. The developed skeletal systems, while closely preserving the original bone topology of the pediatric VRCPs, present substantial improvements in the anatomy of complex and/or small bones. In order to investigate the dosimetric impact of the developed skeletons, the average absorbed doses and the specific absorbed fractions for radiosensitive skeletal tissues (i.e. active marrow and bone endosteum) were computed for some selected external and internal exposure cases, which were then compared with those calculated with the skeletons of pediatric VRCPs. The comparison result showed that the dose values of the pediatric MRCPs were generally similar to those of the pediatric VRCPs for highly penetrating radiations (e.g. photons >200 keV); however, for weakly penetrating radiations (e.g. photons ⩽200 keV and electrons), significant differences up to a factor of 140 were observed.


Subject(s)
Radiation Protection , Surgical Mesh , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Monte Carlo Method , Phantoms, Imaging , Photons , Radiation Dosage , Radiometry
17.
J Radiol Prot ; 40(4)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33045695

ABSTRACT

In a recent epidemiologic risk assessment on late health effects of patients treated with radioactive iodine (RAI), organ/tissue doses of the patients were estimated based on iodine-131Svalues derived from the reference computational phantoms of the International Commission on Radiological Protection (ICRP). However, the use of theSvalues based on the reference phantoms may lead to significant biases in the estimated doses of patients whose body sizes (height and weight) are significantly different from the reference body sizes. To fill this critical gap, we established a comprehensive dataset of body-size-dependent iodine-131Svalues (rT← thyroid) for 30 radiosensitive target organs/tissues by performing Monte Carlo dose calculations coupled with a total of 212 adult male and female computational phantoms in different heights and weights. We observed that theSvalues tend to decrease with increasing body height; for example, theSvalue (gonads ← thyroid) of the 160 cm male phantom is about 3 times higher than that of the 190 cm male phantom at the 70 kg weight. We also observed that theSvalues tend to decrease with increasing body weight for some organs/tissues; for example, theSvalue (skin ← thyroid) of the 45 kg female phantom is about two times higher than that of the 130 kg female phantom at the 160 cm height. For other organs/tissues, which are relatively far from the thyroid, in contrast, theSvalues tend to increase with increasing body weight; for example, theSvalue (bladder ← thyroid) of the 45 kg female phantom is about 2 times lower than that of the 130 kg female phantom. Overall, the majority of the body-size-dependentSvalues deviated to within 25% from those of the reference phantoms. We believe that the use of body-size-dependentSvalues in dose reconstructions should help quantify the dosimetric uncertainty in epidemiologic investigations of RAI-treated patients.


Subject(s)
Iodine , Thyroid Neoplasms , Adult , Body Size , Female , Humans , Iodine Radioisotopes , Male , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiometry
18.
J Radiol Prot ; 40(4): 962-979, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32964861

ABSTRACT

As a geometrical format for computational human phantoms, tetrahedral mesh (TM) is known to have significant advantages over polygonal mesh (PM), including higher compatibility with Monte Carlo radiation transport codes, higher computation speed, and the capability of modeling heterogeneous density variation in an organ of the phantom. In the present study, a computer program named POLY2TET was developed to convert the format of computational human phantoms from PM to TM and generate a sample source code or input file, as applicable, for the converted phantom to be used in some general-purpose Monte Carlo radiation transport codes (i.e. Geant4, PHITS, and MCNP6). The developed program was then tested using four existing high-fidelity PM phantoms. The computation speed, memory requirement, and initialisation time of the generated TM phantoms were also measured and compared with those of the original PM phantoms in Geant4. From the results of our test, it was concluded that the developed program successfully converts PM phantoms into the TM format. The organ doses calculated using the generated TM phantom for the three Monte Carlo codes all produced essentially identical dose values to those for the original PM phantoms in Geant4. The comparison of computation speed showed that compared to the original PM phantoms in Geant4, the TM phantoms in the three Monte Carlo codes were much faster in transporting the particles considered in the present study, i.e. by up to ∼2600 times for electron beams simulated in PHITS. The comparison of the memory requirement showed that the TM phantoms required more memory than the original PM phantoms, but, except for MCNP6, the memory required for the TM phantoms was still less than 12 GB, which typically is available in personal computers these days. For MCNP6, the required memory was much higher, i.e. 60-70 GB.

19.
Phys Med Biol ; 65(17): 175015, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32726766

ABSTRACT

Monte Carlo (MC) radiation transport methods are used for dose calculation as 'gold standard.' However, the method is computationally time-consuming and thus impractical for normal tissue dose reconstructions for the large number of proton therapy patients required for epidemiologic investigations of late health effects. In the present study, we developed a new dose calculation method for the rapid reconstruction of out-of-field neutron dose to patients undergoing pencil beam scanning (PBS) proton therapy. The new dose calculation method is based on neutron dose voxel kernels (DVKs) generated by MC simulations of a proton pencil beam irradiating a water phantom (60 × 60 × 300 cm3), which was conducted using a MC proton therapy simulation code, TOPAS. The DVKs were generated for 19 beam energies (from 70 to 250 MeV with the 10 MeV interval) and three range shifter thicknesses (1, 3, and 5 cm). An in-house program was written in C++ to superimpose the DVKs onto a patient CT images according to proton beam characteristics (energy, position, and direction) available in treatment plans. The DVK dose calculation method was tested by calculating organ/tissue-specific neutron doses of 1- and 5-year-old whole-body computational phantoms where intracranial and craniospinal irradiations were simulated. The DVK-based doses generally showed reasonable agreement with those calculated by direct MC simulations with a detailed PBS model that were previously published, with differences mostly less than 30% and 10% for the intracranial and craniospinal irradiations, respectively. The computation time of the DVK method for one patient ranged from 1 to 30 min on a single CPU core of a personal computer, demonstrating significant improvement over the direct MC dose calculation requiring several days on high-performance computing servers. Our DVK-based dose calculation method will be useful when dosimetry is needed for the large number of patients such as for epidemiologic or clinical research.


Subject(s)
Neutrons , Proton Therapy/methods , Radiation Dosage , Algorithms , Child, Preschool , Craniospinal Irradiation , Humans , Infant , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Water
20.
Radiat Prot Dosimetry ; 189(2): 163-171, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32285115

ABSTRACT

The use of iodine-131 S values based on reference computational phantoms with fixed thyroid model may lead to significant dosimetric errors in patients who may have different thyroid location from the reference phantoms. In the present study, we investigated individual thyroid location variation by examining the computed tomography image sets of 40 adult male and female patients. Subsequently, the thyroid location of the adult male and female mesh-type reference phantoms of the International Commission on Radiological Protection (ICRP) was adjusted to match each the highest, mean and the lowest locations of the thyroid observed in this dataset. The thyroid-adjusted phantoms were implemented into the Geant4 Monte Carlo code to calculate thyroid location-dependent iodine-131 S values (rT â† thyroid) for a total of 30 target regions. The maximum variation among the observed thyroid locations was 39 mm and 36 mm for male and female patients, respectively. The mean thyroid locations of both male and female patients showed a good agreement with the ICRP reference phantoms. The thyroid location-dependent Iodine-131 S values were significantly different from the reference phantoms for most target regions by up to a factor of 3. The use of thyroid location-dependent S values in dose reconstructions should help quantify the dosimetric uncertainty in epidemiologic investigations of patients receiving iodine-131 therapy for hyperthyroidism and thyroid cancer.


Subject(s)
Iodine Radioisotopes , Thyroid Gland , Adult , Female , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiometry , Thyroid Gland/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...