Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 82(2): 416-428, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33462700

ABSTRACT

Understanding the dynamics of plant-associated microbial communities within agriculture is well documented. However, the ecological processes that assemble the plant microbiome are not well understood. This study elucidates the relative dominance of assembly processes across plant compartments (root, stem, and leaves) and developmental stages (emergence, growth, flowering, and maturation). Bacterial community composition and assembly processes were assessed using 16S rRNA gene amplicon sequencing. Null models that couple phylogenetic community composition and species distribution models were used to evaluate ecological assembly processes of bacterial communities. All models highlighted that the balance between the assembly process was modulated by compartments and developmental stages. Dispersal limitation dominated amongst the epiphytic communities and at the maturation stage. Homogeneous selection dominated assembly across plant compartments and development stages. Overall, both sets of models were mostly in agreement in predicting the prevailing assembly processes. Our results show, for the first time, that even though niche-based processes dominate in the plant environment, the relative influence of dispersal limitation in community assembly is important.


Subject(s)
Glycine max , Microbiota , Bacteria/genetics , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
2.
Lett Appl Microbiol ; 72(2): 113-120, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33030230

ABSTRACT

Recent studies have shown that Salmonella shedding status affects sows' microbiota during gestation and that these modifications are reflected in the faecal microbiota of their piglets at weaning. The aims of this study were: (a) to evaluate the persistence, up to the fattening period, of the previously measured link between the microbiota of piglets and their mothers' Salmonella shedding status; and (b) measure the impact of the measured microbiota variations on their Salmonella excretion at this stage. To achieve this, 76 piglets born from 19 sows for which the faecal microbiota was previously documented, were selected in a multisite production system. The faecal matter of these swine was sampled after 4 weeks, at the fattening stage. The Salmonella shedding status and faecal microbiota of these animals were described using bacteriological and 16S rRNA gene amplicon sequencing respectively. The piglet digestive microbiota association with the Salmonella shedding status of their sows did not persist after weaning and did not affect the risk of Salmonella excretion during fattening, while the birth mother still affected the microbiota of the swine at fattening. This supports the interest in sows as a target for potentially transferrable microbiota modifications.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/genetics , Salmonella Infections, Animal/transmission , Salmonella enterica/isolation & purification , Swine Diseases/transmission , Animals , Animals, Newborn/microbiology , Female , RNA, Ribosomal, 16S/genetics , Salmonella enterica/genetics , Swine , Swine Diseases/microbiology , Weaning
3.
J Appl Microbiol ; 126(2): 411-423, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30362648

ABSTRACT

AIM: To observe the transfer of the digestive microbiota from sow to piglet, describe the impact of the sow's Salmonella shedding on this transfer and identify transferred populations that could be associated with the future Salmonella status of the piglets. METHODS AND RESULTS: Salmonella shedding status of 19 sows was determined at the beginning and end of gestation. Four piglets were randomly selected from each sow. Using MiSeq, the microbiotas of the sows at the end of gestation and of their piglets 1 day before weaning were described. Results showed that the Salmonella shedding of the sows, the birth mother, the lairage room, the parity and the contamination of the lairage environment were associated to the microbiota of the piglets (permanova P < 0·05). Several genera were associated with piglets born from negative or positive sows. CONCLUSION: There is a link between the microbiota of the sows at the end of gestation and the microbiota of their piglets at weaning, and the Salmonella shedding of the sow is associated with the microbiota of the piglets. SIGNIFICANCE AND IMPACT OF THE STUDY: Salmonella status of the sows affects the microbiota of their piglets and could affect the long-term Salmonella colonization resistance of these animals and their health.


Subject(s)
Bacterial Shedding , Microbiota , Salmonella/isolation & purification , Swine/microbiology , Animals , Female , Pregnancy , Swine/growth & development , Weaning
4.
Microbiome ; 6(1): 53, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29562928

ABSTRACT

BACKGROUND: One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS: Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS: The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-ß-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS: Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Plant Roots/microbiology , Salix/metabolism , Salix/microbiology , Soil Pollutants/metabolism , Ascomycota/genetics , Ascomycota/growth & development , Ascomycota/metabolism , Basidiomycota/genetics , Basidiomycota/growth & development , Basidiomycota/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Environmental Pollution/analysis , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Plant/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Glutathione Transferase/metabolism , Plant Roots/enzymology , Soil/chemistry , Soil Microbiology , Trees/microbiology
5.
J Appl Microbiol ; 122(1): 30-39, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27684482

ABSTRACT

AIMS: The object of this study was to determine the impact of only modifying the processing and/or particle size of pig feed on Salmonella shedding and faecal microbiota. METHODS AND RESULTS: Pigs were fed a diet that varied only by their processing (pellet or mash) and their particle size (500, 750 or 1250 µm) for 21 days. Salmonella detection in faeces and seroconversion were determined. Faecal microbiota was assessed by Ion Torrent amplicon sequencing and real-time PCR. Significantly fewer pigs (P < 0·05) shed Salmonella in the groups fed mash 500 (1) and mash or pellet 1250 (5 each) compared to the commercial reference group (15) fed pellet 500. Both mash processing and large particle size raised the proportion and number of bacteria from the Bifidobacterium genus in the faecal microbiota of the pigs. Thirteen other taxa significantly varied (P < 0·0005) with feed presentation. CONCLUSION: Mash processing and/or large particle size in pig feed reduces Salmonella shedding prevalence and promotes beneficial populations of digestive microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to demonstrate a difference in Salmonella shedding through only modifying pig feed presentation and is the first to extensively describe modifications of faecal microbiota.


Subject(s)
Animal Feed/microbiology , Feces/microbiology , Salmonella/physiology , Animal Feed/analysis , Animals , Bacterial Shedding , Bifidobacterium/physiology , Microbiota , Particle Size , Real-Time Polymerase Chain Reaction , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Sus scrofa , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control
6.
J Appl Microbiol ; 117(4): 1079-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24995828

ABSTRACT

AIMS: To describe microbial diversity, biofilm composition and biogeochemical potential within biofilms in the water overlying uranium tailings characterized by high pH, high metal concentration and low permeability. METHODS AND RESULTS: To estimate microbial diversity in biofilms formed in water columns overlying uranium mine tailings, culture-dependent and culture-independent methods were employed. High-throughput sequencing revealed the presence of 11 phyla; however, the majority of the sequences were affiliated with four major lineages (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) as confirmed by culture-based methods. Dominant phylotypes were closely related to methylotrophs (Methylobacterium) and bacterial groups able to utilize complex hydrocarbons (Aquabacterium and Dechloromonas). Microbial diversity in biofilms from the 13 m depth was significantly different that in biofilms from 1 to 41 m (P < 0·05). Phylotypes closely related to iron-reducing bacteria were identified at each depth; whereas sulphate-, thio-sulphate-, sulphite- and sulphur-reducing bacteria, at low abundance, were only detected at lower depths. Confocal scanning laser microscopy (CSLM) was used to investigate polymer quantity and composition of the biofilm components, and principal component analysis of the CLSM data revealed that the relative abundance of α-L-fucose and N-acetyl-glucosamine/lipopolysaccharide residues separated tailings-water interface biofilms from those from other depths. Reduced (ferrous) iron was detected within all the biofilm samples examined by scanning X-ray transmission microscopy. CONCLUSIONS: Microbial communities within the water column covering a highly alkaline uranium tailings body form biofilms with microenvironments where iron reduction takes place. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the biogeochemical potential of microbial biofilm communities in the water column covering an alkaline uranium tailings body; specifically, the nature of the bacterial groups detected (Aquabacterium, Dechloromonas) and the presence of reduced iron suggest that complex hydrocarbons are available for bacterial growth and geochemical change, such as iron reduction, can occur even though the system bulk phase is predominantly oxic.


Subject(s)
Bacteria/classification , Biofilms/growth & development , Mining , Soil Pollutants, Radioactive/metabolism , Uranium/metabolism , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny
7.
J Appl Microbiol ; 114(6): 1671-86, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23448257

ABSTRACT

AIMS: To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. METHODS AND RESULTS: To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. CONCLUSIONS: The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings.


Subject(s)
Bacteria/classification , Mining , Uranium , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , Biotransformation , Hydrogen-Ion Concentration , Iron/metabolism , Metals/toxicity , Molecular Sequence Data , Permeability , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride/toxicity
8.
J Microbiol Methods ; 60(2): 143-54, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15590089

ABSTRACT

In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples.


Subject(s)
Asparagus Plant/microbiology , Fusarium/genetics , Plant Diseases/microbiology , Base Sequence , DNA, Fungal/chemistry , DNA, Fungal/genetics , Electrophoresis, Polyacrylamide Gel , Genetic Variation , Molecular Sequence Data , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/genetics , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...